Effect of the 3D distribution on water observations made with the SWI: I. Ganymede
Artikel i vetenskaplig tidskrift, 2020

Context. Characterising and understanding the atmospheres of Jovian icy moons is one of the key exploration goals of the Submillimetre Wave Instrument (SWI), which is to be flown on ESA's Jupiter Icy Moons Explorer (JUICE) mission.
Aims. The aim of this paper is to investigate how and under which conditions a 3D asymmetric distribution of the atmosphere may affect the SWI observations. In this work we target the role of phase angle for both nadir and limb geometries for unresolved and partially resolved disc observations from large distances.Methods. We adapted the LIME software package, a 3D non-local thermodynamical equilibrium radiative transfer model, to evaluate ortho-H2O populations and synthesise the simulated SWI beam spectra for different study cases of Ganymede's atmosphere. The temperature and density vertical distributions were adopted from a previous work. The study cases presented here were selected according to the distance and operational scenarios of moon monitoring anticipated for SWI during the Jupiter phase of the JUICE mission.
Results. We demonstrate that nadir and limb observations at different phase angles will modify the line amplitude and width. Unresolved observations where both absorption against surface continuum and limb emission contributes within the beam will lead to characteristic line wing emission, which may also appear in pure nadir geometry for specific phase angles. We also find that for Ganymede, the 3D non-local thermodynamical equilibrium populations are more highly excited in the upper atmosphere near the sub-solar region than they are in 1D spherically symmetric models. Finally, the 3D radiative transfer is better suited to properly simulate spectral lines for cases where density or population gradients exist along the line of sight.

radiative transfer

planets and satellites: individual: Ganymede

planets and satellites: atmospheres

submillimeter: planetary systems

space vehicles: instruments


Eva Wirström

Chalmers, Rymd-, geo- och miljövetenskap, Onsala rymdobservatorium

Per Bjerkeli

Chalmers, Rymd-, geo- och miljövetenskap, Astronomi och plasmafysik, Galaktisk astrofysik

L. Rezac

Max Planck Inst Sonnensyst Forsch

C. Brinch

Danmarks Tekniske Universitet (DTU)

P. Hartogh

Max Planck Inst Sonnensyst Forsch

Astronomy and Astrophysics

0004-6361 (ISSN) 1432-0746 (eISSN)

Vol. 637 A90


Meteorologi och atmosfärforskning

Astronomi, astrofysik och kosmologi



Mer information

Senast uppdaterat