Gauge Modules for the Lie Algebras of Vector Fields on Affine Varieties
Artikel i vetenskaplig tidskrift, 2020

For a smooth irreducible affine algebraic variety we study a class of gauge modules admitting compatible actions of both the algebra A of functions and the Lie algebra V of vector fields on the variety. We prove that a gauge module corresponding to a simple glN-module is irreducible as a module over the Lie algebra of vector fields unless it appears in the de Rham complex.

Simple modules

Lie algebra of vector fields

Författare

Yuly Billig

Carleton University

Jonathan Nilsson

Chalmers, Matematiska vetenskaper, Algebra och geometri

André Zaidan

Universidade de Sao Paulo (USP)

Algebras and Representation Theory

1386-923X (ISSN) 1572-9079 (eISSN)

Vol. In Press

Ämneskategorier

Algebra och logik

Geometri

Matematisk analys

DOI

10.1007/s10468-020-09983-9

Mer information

Senast uppdaterat

2020-08-19