Central limit theorems for group actions which are exponentially mixing of all orders
Artikel i vetenskaplig tidskrift, 2020

In this paper we establish a general dynamical Central Limit Theorem (CLT) for group actions which are exponentially mixing of all orders. In particular, the main result applies to Cartan flows on finite-volume quotients of simple Lie groups. Our proof uses a novel relativization of the classical method of cumulants, which should be of independent interest. As a sample application of our techniques, we show that the CLT holds along lacunary samples of the horocycle flow on finite-area hyperbolic surfaces applied to any smooth compactly supported function.

Författare

Michael Björklund

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Alexander Gorodnik

University of Bristol

Journal dAnalyse Mathematique

0021-7670 (ISSN) 15658538 (eISSN)

Vol. 141 2 457-482

Ämneskategorier

Algebra och logik

Geometri

Matematisk analys

DOI

10.1007/s11854-020-0106-7

Mer information

Senast uppdaterat

2020-12-03