A finite element method for neutron noise analysis in hexagonal reactors
Paper i proceeding, 2020
geometries. The neutron noise is obtained by solving the frequency-domain two-group neutron diffusion equation in the first order approximation. In order to solve this partial differential equation a code based on a high order finite element method is developed. The novelty of this simulator resides on the possibility of dealing with rectangular meshes in any kind of geometry, thus allowing for complex domains and any location of the perturbation. The finite element method also permits automatic refinements in the cell size (h-adaptability) and in its polynomial degree (p-adaptability) that lead to a fast convergence. In order to show the possibilities of the neutron noise simulator developed a perturbation in a hexagonal two-dimensional reactor is investigated in this paper.
hexagonal geometry
finite element method
neutron noise
Författare
Antoni Vidal-Ferràndiz
Damian Ginestar
Amanda Carreño
Gumersindo Verdú
Christophe Demaziere
Chalmers, Fysik, Subatomär, högenergi- och plasmafysik
Proc. Int. Conf. Physics of Reactors - Transition to a Scalable Nuclear Future (PHYSOR2020)
Cambridge, United Kingdom,
Core monitoring techniques and experimental validation and demonstration (CORTEX)
Europeiska kommissionen (Horisont 2020), 2017-09-01 -- 2021-08-31.
Styrkeområden
Energi
Ämneskategorier
Annan fysik