Generation of interconnected vesicles in a liposomal cell model
Artikel i vetenskaplig tidskrift, 2020

We introduce an experimental method based upon a glass micropipette microinjection technique for generating a multitude of interconnected vesicles (IVs) in the interior of a single giant unilamellar phospholipid vesicle (GUV) serving as a cell model system. The GUV membrane, consisting of a mixture of soybean polar lipid extract and anionic phosphatidylserine, is adhered to a multilamellar lipid vesicle that functions as a lipid reservoir. Continuous IV formation was achieved by bringing a micropipette in direct contact with the outer GUV surface and subjecting it to a localized stream of a Ca2+ solution from the micropipette tip. IVs are rapidly and sequentially generated and inserted into the GUV interior and encapsulate portions of the micropipette fluid content. The IVs remain connected to the GUV membrane and are interlinked by short lipid nanotubes and resemble beads on a string. The vesicle chain-growth from the GUV membrane is maintained for as long as there is the supply of membrane material and Ca2+ solution, and the size of the individual IVs is controlled by the diameter of the micropipette tip. We also demonstrate that the IVs can be co-loaded with high concentrations of neurotransmitter and protein molecules and displaying a steep calcium ion concentration gradient across the membrane. These characteristics are analogous to native secretory vesicles and could, therefore, serve as a model system for studying secretory mechanisms in biological systems.

Författare

Baharan Ali Doosti

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Daniel Fjällborg

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Kiryl Kustanovich

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Aldo Jesorka

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Ann-Sofie Cans

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Tatsiana Lobovkina

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Scientific Reports

2045-2322 (ISSN) 20452322 (eISSN)

Vol. 10 1 14040

Chemical Reaction Networks: signal amplification, spatiotemporal control, and materials (CReaNet)

Europeiska kommissionen (EU) (EC/H2020/812868), 2019-04-01 -- 2023-03-01.

Styrkeområden

Nanovetenskap och nanoteknik

Ämneskategorier

Fysikalisk kemi

Annan medicinsk grundvetenskap

Biofysik

DOI

10.1038/s41598-020-70562-5

PubMed

32820180

Mer information

Senast uppdaterat

2022-02-25