Physiographic and climatic controls on regional groundwater dynamics
Artikel i vetenskaplig tidskrift, 2020

The main goal of this study is to explore whether the ideas established by surface water hydrologists in the context of “PUB” (predictions in ungauged basins) can be useful in hydrogeology. The concrete question is whether it is possible to create predictive models for groundwater systems with no or few observations based on knowledge derived from similar groundwater systems which are well‐observed. To do so, this study analyses the relationship between temporal dynamics of groundwater levels and climatic and physiographic characteristics. The analysis is based on data from 341 wells in Southern Germany with ten‐year daily groundwater hydrographs. Observation wells are used in confined and unconfined sand and gravel aquifers from narrow mountainous valleys as well as more extensive lowland alluvial aquifers. Groundwater dynamics at each location are summarized with 46 indices describing features of groundwater hydrographs. Besides borehole log‐derived geologic information, local and regional morphologic characteristics as well as topography‐derived boundary and climatic descriptors were derived for each well. Regression relationships were established by mining the data for associations between dynamics and descriptors with forward stepwise regression at a confidence level >95%. The most important predictors are geology and boundary conditions and secondarily, climate, as well as some topographic features, such as regional convergence. The multiple regression models are in general agreement with process understanding linked to groundwater dynamics in unconfined aquifers. This systematic investigation suggests that statistical regionalization of groundwater dynamics in ungauged aquifers based on map‐derived physiographic and climatic controls may be feasible.

Groundwater dynamics index

Groundwater hydrograph

Southern Germany

Groundwater regionalization

selective inference

Multiple regression

Författare

Ezra Haaf

Chalmers, Arkitektur och samhällsbyggnadsteknik, Geologi och geoteknik

Göteborgs universitet, institutionen för geovetenskaper

Markus Giese

Göteborgs universitet, institutionen för geovetenskaper

Benedikt Heudorfer

Albert-Ludwigs-Universität Freiburg

Kerstin Stahl

Albert-Ludwigs-Universität Freiburg

Barthel Roland

Göteborgs universitet, institutionen för geovetenskaper

Water Resources Research

0043-1397 (ISSN)

Vol. 56 e2019WR026545

Drivkrafter

Hållbar utveckling

Ämneskategorier

Vattenteknik

Havs- och vattendragsteknik

Annan naturresursteknik

Fundament

Grundläggande vetenskaper

DOI

10.1029/2019WR026545

Mer information

Skapat

2020-10-07