Revealing the intermediate-mass black hole at the heart of the dwarf galaxy NGC404 with sub-parsec resolution ALMA observations
Artikel i vetenskaplig tidskrift, 2020

We estimate the mass of the intermediate-mass black hole at the heart of the dwarf elliptical galaxy NGC 404 using Atacama Large Millimetre/submillimetre Array (ALMA) observations of the molecular interstellar medium at an unprecedented linear resolution of approximate to 0.5 pc, in combination with existing stellar kinematic information. These ALMA observations reveal a central disc/torus of molecular gas clearly rotating around the black hole. This disc is surrounded by a morphologically and kinematically complex flocculent distribution of molecular clouds, that we resolve in detail. Continuum emission is detected from the central parts of NGC 404, likely arising from the Rayleigh-Jeans tail of emission from dust around the nucleus, and potentially from dusty massive star-forming clumps at discrete locations in the disc. Several dynamical measurements of the black hole mass in this system have been made in the past, but they do not agree. We show here that both the observed molecular gas and stellar kinematics independently require a approximate to 5 x 10(5) M-circle dot black hole once we include the contribution of the molecular gas to the potential. Our best estimate comes from the high-resolution molecular gas kinematics, suggesting the black hole mass of this system is 5.5(-3.8)(+4.1) x 10(5) M-circle dot (at the 99 per cent confidence level), in good agreement with our revised stellar kinematic measurement and broadly consistent with extrapolations from the black hole mass-velocity dispersion and black hole massbulge mass relations. This highlights the need to accurately determine the mass and distribution of each dynamically important component around intermediate-mass black holes when attempting to estimate their masses.

galaxies: evolution

galaxies: dwarf

galaxies: elliptical and lenticular, cD

ISM-galaxies: kinematics and dynamics

galaxies: individual: NGC 404-galaxies

Författare

Timothy A. Davis

Cardiff University

Dieu D. Nguyen

National Institutes of Natural Sciences

Anil C. Seth

University of Utah

Jenny E. Greene

Princeton University

Kristina Nyland

Naval Research Laboratory

Aaron J. Barth

University of California at Irvine (UCI)

Martin Bureau

Yonsei University

University of Oxford

Michele Cappellari

University of Oxford

Mark den Brok

Leibniz-Institut Für Astrophysik Potsdam

Satoru Iguchi

National Institutes of Natural Sciences

The Graduate University for Advanced Studies (SOKENDAI)

Federico Lelli

Cardiff University

Lijie Liu

University of Oxford

Nadine Neumayer

Max-Planck-Gesellschaft

North

Cardiff University

Kyoko Onishi

Chalmers, Rymd-, geo- och miljövetenskap, Astronomi och plasmafysik

Marc Sarzi

Armagh Observatory and Planetarium

Mark D. Smith

University of Oxford

Thomas G. Williams

Max-Planck-Gesellschaft

Monthly Notices of the Royal Astronomical Society

0035-8711 (ISSN) 1365-2966 (eISSN)

Vol. 496 4 4061-4078

Ämneskategorier

Subatomär fysik

Analytisk kemi

Astronomi, astrofysik och kosmologi

DOI

10.1093/mnras/staa1567

Mer information

Senast uppdaterat

2023-01-02