Artificial intelligence-based detection of lymph node metastases by PET/CT predicts prostate cancer-specific survival
Artikel i vetenskaplig tidskrift, 2021
Methods A group of 399 patients with biopsy-proven PCa who had undergone(18)F-choline PET/CT for staging prior to treatment were used to train (n = 319) and test (n = 80) the AI-based tool. The tool consisted of convolutional neural networks using complete PET/CT scans as inputs. In the test set, the AI-based lymph node detections were compared to those of two independent readers. The association with PCa-specific survival was investigated. Results The AI-based tool detected more lymph node lesions than Reader B (98 vs. 87/117;p = .045) using Reader A as reference. AI-based tool and Reader A showed similar performance (90 vs. 87/111;p = .63) using Reader B as reference. The number of lymph node lesions detected by the AI-based tool, PSA, and curative treatment was significantly associated with PCa-specific survival.
Conclusion This study shows the feasibility of using an AI-based tool for automated and objective interpretation of PET/CT images that can provide assessments of lymph node lesions comparable with that of experienced readers and prognostic information in PCa patients.
fluorocholine
PCa
artificial intelligence
PET
lymph node metastases
Författare
Pablo Borrelli
Sahlgrenska universitetssjukhuset
Måns Larsson
Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik
Johannes Ulen
Eigenvision AB
Olof Enqvist
Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik
Elin Tragardh
Lunds universitet
Skånes universitetssjukhus (SUS)
Mads Hvid Poulsen
Syddansk Universitet
Odense University Hospital
Mike Allan Mortensen
Odense Universitetshospital
Henrik Kjolhede
Göteborgs universitet
Poul Flemming Hoilund-Carlsen
Odense Universitetshospital
Syddansk Universitet
Lars Edenbrandt
Göteborgs universitet
Clinical Physiology and Functional Imaging
1475-0961 (ISSN) 1475097x (eISSN)
Vol. 41 1 62-67Styrkeområden
Hälsa och teknik
Ämneskategorier
Urologi och njurmedicin
Radiologi och bildbehandling
Medicinsk bildbehandling
DOI
10.1111/cpf.12666
PubMed
32976691