Fast Dynamic Voltage Security Margin Estimation: Concept and Development
Artikel i vetenskaplig tidskrift, 2020

This paper develops a machine learning-based method for fast estimation of the dynamic voltage security margin (DVSM). The DVSM can incorporate the dynamic system response following a disturbance and it generally provides a better measure of security than the more commonly used static voltage security margin (VSM). Using the concept of transient P-V curves, the paper first establishes and visualizes the circumstances when the DVSM is to prefer to the static VSM. To overcome the computational difficulties in estimating the DVSM, the paper proposes a method based on training two separate neural networks on a data set composed of combinations of different operating conditions and contingency scenarios generated using time-domain simulations. The trained neural networks are used to improve the search algorithm and significantly increase the computational efficiency in estimating the DVSM. The machine learning-based approach is thus applied to support the estimation of the DVSM, while the actual margin is validated using time-domain simulations. The proposed method was tested on the Nordic32 test system and the number of time-domain simulations was possible to reduce with approximately 70 %, allowing system operators to perform the estimations in near real-time.

Voltage security assessment

Neural Networks

Dynamic voltage security margin

Real-time security assessment

Författare

Hannes Hagmar

Chalmers, Elektroteknik, Elkraftteknik

Robert Eriksson

Svenska kraftnät

Anh Tuan Le

Chalmers, Elektroteknik, Elkraftteknik

IET Smart Grid

25152947 (eISSN)

Vol. 3 4 470-478

Avancerad visualisering av spänningsstabilitetsgränser och systemskydd baserat på realtidsmätningar

Energimyndigheten (44358-1), 2016-06-01 -- 2020-12-31.

Svenska kraftnät, 2016-06-01 -- 2020-12-31.

Ämneskategorier (SSIF 2011)

Annan data- och informationsvetenskap

Datavetenskap (datalogi)

Datorsystem

Annan elektroteknik och elektronik

Drivkrafter

Hållbar utveckling

Styrkeområden

Energi

DOI

10.1049/iet-stg.2019.0278

Mer information

Senast uppdaterat

2024-01-03