Eigenvector continuation as an efficient and accurate emulator for uncertainty quantification
Artikel i vetenskaplig tidskrift, 2020

First principles calculations of atomic nuclei based on microscopic nuclear forces derived from chiral effective field theory (EFT) have blossomed in the past years. A key element of such ab initio studies is the understanding and quantification of systematic and statistical errors arising from the omission of higher-order terms in the chiral expansion as well as the model calibration. While there has been significant progress in analyzing theoretical uncertainties for nucleon-nucleon scattering observables, the generalization to multi-nucleon systems has not been feasible yet due to the high computational cost of evaluating observables for a large set of low-energy couplings. In this Letter we show that a new method called eigenvector continuation (EC) can be used for constructing an efficient and accurate emulator for nuclear many-body observables, thereby enabling uncertainty quantification in multi-nucleon systems. We demonstrate the power of EC emulation with a proof-of-principle calculation that lays out all correlations between bulk ground-state observables in the few-nucleon sector. On the basis of ab initio calculations for the ground-state energy and radius in 4 He, we demonstrate that EC is more accurate and efficient compared to established methods like Gaussian processes.

Författare

S. Koenig

Technische Universität Darmstadt

North Carolina State University

Helmholtz-Gemeinschaft Deutscher Forschungszentren

Andreas Ekström

Chalmers, Fysik, Subatomär, högenergi- och plasmafysik

K. Hebeler

Helmholtz-Gemeinschaft Deutscher Forschungszentren

Technische Universität Darmstadt

D. Lee

Michigan State University

A. Schwenk

Helmholtz-Gemeinschaft Deutscher Forschungszentren

Technische Universität Darmstadt

Max-Planck-Gesellschaft

Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics

0370-2693 (ISSN)

Vol. 810 135814

Strong interactions for precision nuclear physics (PrecisionNuclei)

Europeiska kommissionen (EU) (EC/H2020/758027), 2018-02-01 -- 2023-01-31.

Ämneskategorier (SSIF 2011)

Beräkningsmatematik

Annan fysik

Teoretisk kemi

DOI

10.1016/j.physletb.2020.135814

Mer information

Senast uppdaterat

2022-02-25