Tuned acidity in zeotypes: A descriptor to unravel the direct conversion of methane to methanol
Doktorsavhandling, 2020

The catalyst's acidity is crucial in countless chemical reactions, and thus to tune this parameter means to take the lead on the desired catalytic reaction. Therefore, it is not surprising that zeolites have been used since decades as catalysts for their outstanding properties of solid acids. Alongside, zeotypes are zeolite-like materials whose chemical composition is altered to obtain ad hoc acidity, and are therefore of outmost interest for many catalytic reactions. Here, the chosen reaction affected by the zeotype acidity is the direct conversion of methane to methanol. Indeed, a lower acidity of the zeotype promotes the extraction of methanol, whose precursors tend to remain adsorbed on the acidic sites of the zeotype.

In this study, Al, B, Fe, Ga, and Ti are incorporated in the MFI framework of silicalite zeotypes. The zeotype crystallites are imaged with scanning and transmission electron microscopy, and the MFI framework structure is characterized with X-ray diffraction, nitrogen sorption and Raman spectroscopy. The process from the as synthesized samples to the corresponding materials in the acid form is examined with in situ infrared spectroscopy, with and without ammonia and nitric oxide as probe molecules. Furthermore, the following series of increasing acidity is observed by means of infrared spectroscopy: 0 = pure silicalite = Ti-silicalite < B-silicalite < Fe-silicalite < Ga-silicalite < Al-silicalite.

The influence of the zeotype acidity during methane exposure and temperature programmed desorption of methanol has been investigated in situ with infrared spectroscopy. The results show that the presence of iron promotes methane activation and that methanol is more strongly bound to the zeotype in the presence of stronger acid sites. Because methane activation and methanol extraction are two of the key steps in the direct conversion of methane to methanol, our results indicate that Al-free zeotypes with tuned acidity pinpoint important catalyst design parameters needed for this reaction.

methanol

MFI

zeolite

methane

catalysis

infrared spectroscopy

zeotype

Pater Noster
Opponent: Unni Olsbye, University of Oslo, Norway

Författare

Simone Creci

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Tuned Acidity for Catalytic Reactions: Synthesis and Characterization of Fe- and Al-MFI Zeotypes

Topics in Catalysis,;Vol. 62(2019)p. 689-698

Artikel i vetenskaplig tidskrift

Local anisotropy in single crystals of zeotypes with the MFI framework structure evidenced by polarised Raman spectroscopy

Physical Chemistry Chemical Physics,;Vol. 22(2020)p. 1640-1654

Artikel i vetenskaplig tidskrift

Acidity as Descriptor for Methanol Desorption in B-, Ga- and Ti-MFI Zeotypes

Catalysts,;Vol. 11(2021)p. 1-12

Artikel i vetenskaplig tidskrift

Zeotyper är mikroporösa material organiserade i kanaler och burar. Den kemiska sammansättningen av deras primära byggstenar består av kisel- och syreatomer. Införlivandet av andra element än kisel i zeotypstrukturen resulterar i en av de viktigaste egenskaperna hos zeotyper, som undersöks i denna avhandling: deras surhet. Som andra välkända syror i flytande form, såsom t. ex. ättiksyra och svavelsyra, kan zeotyper uppträda som fasta syror och fungera som protondonatorer. Många kemiska reaktioner som påskyndas av zeotyper påverkas av deras surhet. Målreaktionen för denna avhandling är den direkta omvandlingen av metan till metanol, önskvärd ur energi-, ekonomi- och hållbarhetsperspektiv. I denna avhandling framställs zeotyper med ad hoc-surhet och karaktäriseras med avseende på direkt omvandling av metan till metanol.

Ämneskategorier

Materialteknik

Kemiteknik

Organisk kemi

Annan naturvetenskap

Infrastruktur

Chalmers materialanalyslaboratorium

Styrkeområden

Materialvetenskap

ISBN

978-91-7905-422-9

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4889

Utgivare

Chalmers

Pater Noster

Online

Opponent: Unni Olsbye, University of Oslo, Norway

Mer information

Senast uppdaterat

2023-11-08