Harnessing the unique properties of MXenes for advanced rechargeable batteries
Reviewartikel, 2021

In recent years, two-dimensional MXenes have been emerged as potential electrode materials for rechargeable batteries due to their unique properties such as exceptional safety, significant interlayer spacing, environmental flexibility, large surface area, high electrical conductivity, and excellent thermal stability. This review examined all of the recent advances in the field of MXenes and their composites (hybrid structures), which are found to be useful for the electrochemical applications of advanced rechargeable batteries. The main focus of this review is on metal-ion batteries and lithium-sulfur (Li-S) batteries. It is intended to show that the combination of recent improvements in the synthesis and characterization, greater control of the interlayer distance, and new MXene composites, together serve as an emerging and potential way for energy storage applications.

two-dimensional (2D) materials


sulfur (Li&#8211


S) batteries

metal-ion batteries

Van der Waals heterostructure

rechargable batteries


Deobrat Singh

Uppsala universitet

Vivekanand Shukla

Chalmers, Mikroteknologi och nanovetenskap (MC2), Elektronikmaterial och system

Nabil Khossossi

Kungliga Tekniska Högskolan (KTH)

Uppsala universitet

Abdelmajid Ainane

Uppsala universitet

Kungliga Tekniska Högskolan (KTH)

Rajeev Ahuja

Uppsala universitet

Journal of Physics-Energy

2515-7655 (ISSN)

Vol. 3 1 012005


Oorganisk kemi


Annan kemiteknik



Mer information

Senast uppdaterat