Momentum exchange between light and nanostructured matter
Doktorsavhandling, 2021

An object's translational and rotational motion is associated with linear and angular momenta. When multiple objects interact the exchange of momentum dictates the new system's motion. Since light, despite being massless, carries both linear and angular momentum it too can partake in this momentum exchange and mechanically affect matter in tangible ways. Due to conservation of momentum, any such exchange must be reciprocal, and the light therefore acquires an opposing momentum component. Hence, light and matter are inextricably connected and one can be manipulated to induce interesting effects to the other. Naturally, any such effect is facilitated by having strongly enhanced light-matter interaction, which for visible light is something that is obtained when nanostructured matter supports optical resonances. This thesis explores this reciprocal relationship and how nanostructured matter can be utilised to augment these phenomena.

Once focused by a strong lens, light can form optical tweezers which through optical forces and torques can confine and manipulate small particles in space. Metallic nanorods trapped in two dimensions against a cover glass can receive enough angular momentum from circularly polarised light to rotate with frequencies of several tens of kilohertz. In the first paper of this thesis, the photothermal effects associated with such optical rotations are studied to observe elevated thermal environments and morphological changes to the nanorod. Moreover, to elucidate upon the interactions between the trapped particle and the nearby glass surface, in the thesis' second paper a study is conducted to quantify the separation distance between the two under different trapping conditions. The particle is found to be confined ~30-90 nm away from the surface.

The momentum exchange from a single nanoparticle to a light beam is negligible. However, by tailoring the response of an array of nanoparticles, phase-gradient metasurfaces can be constructed that collectively and controllably alter the incoming light's momentum in a macroscopically significant way, potentially enabling a paradigm shift to flat optical components. In the thesis' third paper, a novel fabrication technique to build such metasurfaces in a patternable polymer resist is investigated. The technique is shown to produce efficient, large-scale, potentially flexible, substrate-independent flat optical devices with reduced fabricational complexity, required time, and cost.

At present, optical metasurfaces are commonly viewed as stationary objects that manipulate light just like common optical components, but do not themselves react to the light's changed momentum. In the last paper of this thesis, it is realised that this is an overlooked potential source of optical force and torque. By incorporating a beam-steering metasurface into a microparticle, a new type of nanoscopic robot – a metavehicle – is invented. Its propulsion and steering are based on metasurface-induced optical momentum transfer and the metavehicle is shown to be driven in complex shapes even while transporting microscopic cargo.

momentum exchange.

metavehicle

optical force and torque

phase-gradient metasurface

optical tweezers

rotary nanomotor

nano-optics

Zoom - Contact daniel.andren@chalmers.se in advance for password
Opponent: Prof. Kishan Dholakia, School of Physics and Astronomy, University of St Andrews, United Kingdom

Författare

Daniel Andrén

Chalmers, Fysik, Nano- och biofysik

Surface Interactions of Gold Nanoparticles Optically Trapped against an Interface

Journal of Physical Chemistry C,; Vol. 123(2019)p. 16406-16414

Artikel i vetenskaplig tidskrift

Large-Scale Metasurfaces Made by an Exposed Resist

ACS Photonics,; Vol. 7(2020)p. 885-892

Artikel i vetenskaplig tidskrift

Microscopic Metavehicles Powered and Steered by Embedded Optical Metasurfaces - Daniel Andrén, Denis G. Baranov, Steven Jones, Giovanni Volpe, Ruggero Verre, Mikael Käll

Allt ljus som når våra ögon gör det efter interaktion med materia. Således är växelverkan däremellan central. Ju mindre en partikel blir desto svagare blir interaktionen med ljus, men när partiklar av vissa material når storlekar jämförbara med våglängden av ljus förstärks kopplingen effektivt av resonansfenomen.

I naturen ger dessa effekter upphov till klara färger hos vissa fjärilsvingar och fågelskrudar, medan forskare inom nano-optik utvecklar artificiella strukturer med liknande funktioner. En sådan är optiska metaytor, där nanopartiklar kollektivt kan styra och forma ljus. Genom att välja partiklar och mönster rätt skulle dessa kunna ersätta dagens kameralinser.

Utöver energi bär en ljusvåg på rörelsemängd och rörelsemängdsmoment. Genom att överföra delar av dessa kan ljus påverka små partiklar med krafter och vridmoment. I så kallade optiska pincetter kan dessa effekter användas för att fånga och manipulera objekt med hög precision.

I denna avhandling har förhållandet mellan optiska krafter och resonansförstärkta nanopartiklar undersökts, med målet att förbättra kontroll av både ljus och materia. Inledningsvis studerades guldnanostavar i optiska pincetter, för att klargöra uppvärmningseffekter och påverkan av närliggande glasytor. Därefter utvecklades en metod för förenklad tillverkning av optiska metaytor. Slutligen kombinerades byggstenarna optiska krafter och metaytor för att konstruera mikroskopiska metarobotar som drivs genom avböjning av polariserat ljus.

Styrkeområden

Nanovetenskap och nanoteknik (SO 2010-2017, EI 2018-)

Ämneskategorier

Fysik

Annan fysik

Nanoteknik

Infrastruktur

Chalmers materialanalyslaboratorium

Nanotekniklaboratoriet

ISBN

978-91-7905-468-7

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4935

Utgivare

Chalmers tekniska högskola

Zoom - Contact daniel.andren@chalmers.se in advance for password

Online

Opponent: Prof. Kishan Dholakia, School of Physics and Astronomy, University of St Andrews, United Kingdom

Mer information

Senast uppdaterat

2021-03-24