Channel Estimation for RIS-Aided mmWave MIMO Systems via Atomic Norm Minimization
Artikel i vetenskaplig tidskrift, 2021

A reconfigurable intelligent surface (RIS) can shape the radio propagation environment by virtue of changing the impinging electromagnetic waves towards any desired directions, thus, breaking the general Snell’s reflection law. However, the optimal control of the RIS requires perfect channel state information (CSI) of the individual channels that link the base station (BS) and the mobile station (MS) to each other via the RIS. Thereby super-resolution channel (parameter) estimation needs to be efficiently conducted at the BS or MS with CSI feedback to the RIS controller. In this paper, we adopt a two-stage channel estimation scheme for RIS-aided millimeter wave (mmWave) MIMO systems without a direct BS-MS channel, using atomic norm minimization to sequentially estimate the channel parameters, i.e., angular parameters, angle differences, and the products of propagation path gains. We evaluate the mean square error of the parameter estimates, the RIS gains, the average effective spectrum efficiency bound, and average squared distance between the designed beamforming and combining vectors and the optimal ones. The results demonstrate that the proposed scheme achieves super-resolution estimation compared to the existing benchmark schemes, thus offering promising performance in the subsequent data transmission phase.

Atomic norm minimization

channel parameter estimation

millimeter wave MIMO

compressive sensing

reconfigurable intelligent surface


Jiguang He

Oulun Yliopisto

Henk Wymeersch

Chalmers, Elektroteknik, Kommunikation, Antenner och Optiska Nätverk, Kommunikationssystem

Markku Juntti

Oulun Yliopisto

IEEE Transactions on Wireless Communications

1536-1276 (ISSN)

Vol. 20 9 5786-5797 9398559

Multidimensionell signalbehandling med frekvenskammar

Vetenskapsrådet (VR) (2018-03701), 2018-12-01 -- 2021-12-31.


Informations- och kommunikationsteknik







Mer information

Senast uppdaterat