Photoluminescence line shapes for color centers in silicon carbide from density functional theory calculations
Artikel i vetenskaplig tidskrift, 2021

Silicon carbide with optically and magnetically active point defects offers unique opportunities for quantum technology applications. Since interaction with these defects commonly happens through optical excitation and deexcitation, a complete understanding of their light-matter interaction in general and optical signatures in particular is crucial. Here, we employ quantum mechanical density functional theory calculations to investigate the photoluminescence line shapes of selected, experimentally observed color centers (including single vacancies, double vacancies, and vacancy-impurity pairs) in 4H-SiC. The analysis of zero-phonon lines as well as Huang-Rhys and Debye-Waller factors is accompanied by a detailed study of the underlying lattice vibrations. We show that the defect line shapes are governed by strong coupling to bulk phonons at lower energies and localized vibrational modes at higher energies. Generally, good agreement with the available experimental data is obtained, and thus we expect our theoretical work to be beneficial for the identification of defect signatures in the photoluminescence spectra and thereby advance the research in quantum photonics and quantum information processing.

Författare

A. Hashemi

Aalto-Yliopisto

Christopher Linderälv

Chalmers, Fysik, Kondenserad materie- och materialteori

A. V. Krasheninnikov

Aalto-Yliopisto

Helmholtz

Tapio Ala-Nissila

Loughborough University

Aalto-Yliopisto

Paul Erhart

Chalmers, Fysik, Kondenserad materie- och materialteori

H. P. Komsa

Oulun Yliopisto

Aalto-Yliopisto

Physical Review B

24699950 (ISSN) 24699969 (eISSN)

Vol. 103 12 125203

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Den kondenserade materiens fysik

DOI

10.1103/PhysRevB.103.125203

Mer information

Senast uppdaterat

2021-05-28