Fast Dynamic Voltage Security Margin Estimation: Concept and Development
Artikel i vetenskaplig tidskrift, 2020

This paper develops a machine learning-based method for fast estimation of the dynamic voltage security margin (DVSM). The DVSM can incorporate the dynamic system response following a disturbance and it generally provides a better measure of security than the more commonly used static voltage security margin (VSM). Using the concept of transient P-V curves, the paper first establishes and visualizes the circumstances when the DVSM is to prefer to the static VSM. To overcome the computational difficulties in estimating the DVSM, the paper proposes a method based on training two separate neural networks on a data set composed of combinations of different operating conditions and contingency scenarios generated using time-domain simulations. The trained neural networks are used to improve the search algorithm and significantly increase the computational efficiency in estimating the DVSM. The machine learning-based approach is thus applied to support the estimation of the DVSM, while the actual margin is validated using time-domain simulations. The proposed method was tested on the Nordic32 test system and the number of time-domain simulations was possible to reduce with approximately 70 %, allowing system operators to perform the estimations in near real-time.

Real-time security assessment

Neural Networks

Voltage security assessment

Dynamic voltage security margin

Författare

Hannes Hagmar

Chalmers, Elektroteknik, Elkraftteknik

Robert Eriksson

Svenska kraftnät

Anh Tuan Le

Chalmers, Elektroteknik, Elkraftteknik

IET Smart Grid

25152947 (eISSN)

Vol. 3 4 470-478

Avancerad visualisering av spänningsstabilitetsgränser och systemskydd baserat på realtidsmätningar

Svenska kraftnät, 2016-06-01 -- 2020-12-31.

Energimyndigheten (44358-1), 2016-06-01 -- 2020-12-31.

Ämneskategorier (SSIF 2011)

Annan data- och informationsvetenskap

Datavetenskap (datalogi)

Datorsystem

Annan elektroteknik och elektronik

Drivkrafter

Hållbar utveckling

Styrkeområden

Energi

DOI

10.1049/iet-stg.2019.0278

Mer information

Senast uppdaterat

2025-02-10