Tuning Hole Mobility of Individual p-Doped GaAs Nanowires by Uniaxial Tensile Stress
Artikel i vetenskaplig tidskrift, 2021

Strain engineering provides an effective way of tailoring the electronic and optoelectronic properties of semiconductor nanomaterials and nanodevices, giving rise to novel functionalities. Here, we present direct experimental evidence of strain-induced modifications of hole mobility in individual gallium arsenide (GaAs) nanowires, using in situ transmission electron microscopy (TEM). The conductivity of the nanowires varied with applied uniaxial tensile stress, showing an initial decrease of similar to 5-20% up to a stress of 1-2 GPa, subsequently increasing up to the elastic limit of the nanowires. This is attributed to a hole mobility variation due to changes in the valence band structure caused by stress and strain. The corresponding lattice strain in the nanowires was quantified by in situ four dimensional scanning TEM and showed a complex spatial distribution at all stress levels. Meanwhile, a significant red shift of the band gap induced by the stress and strain was unveiled by monochromated electron energy loss spectroscopy.

strain engineering

GaAs nanowires

hole transport

phonon scattering

band shift

Författare

Lunjie Zeng

Chalmers, Fysik, Nano- och biofysik

Jonatan Holmér

Chalmers, Fysik, Nano- och biofysik

Rohan Dhall

Lawrence Berkeley National Laboratory

Christoph Gammer

Österreichische Akademie der Wissenschaften

Andrew M. Minor

Lawrence Berkeley National Laboratory

University of California at Berkeley

Eva Olsson

Chalmers, Fysik, Nano- och biofysik

Nano Letters

1530-6984 (ISSN) 1530-6992 (eISSN)

Vol. 21 9 3894-3900

Enabling Science and Technology through European Electron Microscopy (ESTEEM3)

Europeiska kommissionen (EU) (823717), 2019-01-01 -- 2022-12-31.

Investigation of strain effects of semiconductor nanowires by in situ microscopy transmission electron microscopy

Vetenskapsrådet (VR) (2016-04618), 2017-01-01 -- 2020-12-31.

Ämneskategorier

Teknisk mekanik

Annan materialteknik

Den kondenserade materiens fysik

DOI

10.1021/acs.nanolett.1c00353

PubMed

33914543

Mer information

Senast uppdaterat

2021-06-21