Constraining the Impact of Dust-Driven Droplet Freezing on Climate Using Cloud-Top-Phase Observations
Artikel i vetenskaplig tidskrift, 2021

Despite advances in our understanding of ice-nucleating particles, the effect of cloud glaciation on the Earth's radiation balance has remained poorly constrained. Particularly, dust ice nuclei are believed to enhance cloud glaciation in the Northern Hemisphere. We used satellite observations of the hemispheric and seasonal contrast in cloud top phase to assess the dust-driven droplet freezing in a climate model. The required freezing efficiency for dust ice nuclei suggests that climate models glaciate too few clouds through immersion droplet freezing. After tuning, the model leads to more realistic cloud-top-phase contrasts and a dust-driven glaciation effect of 0.14 ± 0.13 W m−2 between 30°N and 60°N. Observations of cloud-top-phase contrasts provide a strong constraint for ice formation in mixed-phase clouds and may provide a weak constraint for the associated impact on radiation and precipitation. Future studies should therefore consider both the mean-state cloud-phase partitioning and cloud-phase contrasts to achieve a more accurate simulation of dust-driven cloud glaciation.


Diego Villanueva

Leibniz Institute for Tropospheric Research

David Neubauer

Eidgenössische Technische Hochschule Zürich (ETH)

Blaž Gasparini

Universität Wien

University of Washington

Luisa Ickes

Chalmers, Rymd-, geo- och miljövetenskap, Mikrovågs- och optisk fjärranalys

Ina Tegen

Leibniz Institute for Tropospheric Research

Geophysical Research Letters

0094-8276 (ISSN) 19448007 (eISSN)

Vol. 48 11 e2021GL092687


Meteorologi och atmosfärforskning





Mer information

Senast uppdaterat