Lane-Level Map Matching based on HMM
Artikel i vetenskaplig tidskrift, 2021
map matching. Apart from GPS values, the model is further assisted by yaw rate data (converted to a lane change indicator signal) and visual cues in the form of the left and right lane marking types (dashed, solid, etc.). Having defined expressions for the HMM emission and transition probabilities, we evaluate our model to demonstrate that it achieves 95.1% recall and 3.3% median path length error for motorway trajectories.
map matching
Viterbi algorithm
road networks
lane-level map matching
hidden Markov model
Författare
Anders Hansson
Zenuity AB
Ellen Korsberg
Student vid Chalmers
Roza Maghsood
Zenuity AB
Eliza Nordén
Student vid Chalmers
Selpi Selpi
Chalmers, Mekanik och maritima vetenskaper, Fordonssäkerhet
IEEE Transactions on Intelligent Vehicles
23798858 (eISSN)
Vol. 6 3 430-439Ämneskategorier
Annan data- och informationsvetenskap
Annan teknik
Sannolikhetsteori och statistik
Datavetenskap (datalogi)
Styrkeområden
Informations- och kommunikationsteknik
Transport
Drivkrafter
Hållbar utveckling
DOI
10.1109/TIV.2020.3035329