“Global” cardiac atherosclerotic burden assessed by artificial intelligence-based versus manual segmentation in 18F-sodium fluoride PET/CT scans: Head-to-head comparison
Artikel i vetenskaplig tidskrift, 2022

Background: Artificial intelligence (AI) is known to provide effective means to accelerate and facilitate clinical and research processes. So in this study it was aimed to compare a AI-based method for cardiac segmentation in positron emission tomography/computed tomography (PET/CT) scans with manual segmentation to assess global cardiac atherosclerosis burden. Methods: A trained convolutional neural network (CNN) was used for cardiac segmentation in 18F-sodium fluoride PET/CT scans of 29 healthy volunteers and 20 angina pectoris patients and compared with manual segmentation. Parameters for segmented volume (Vol) and mean, maximal, and total standardized uptake values (SUVmean, SUVmax, SUVtotal) were analyzed by Bland-Altman Limits of Agreement. Repeatability with AI-based assessment of the same scans is 100%. Repeatability (same conditions, same operator) and reproducibility (same conditions, two different operators) of manual segmentation was examined by re-segmentation in 25 randomly selected scans. Results: Mean (± SD) values with manual vs. CNN-based segmentation were Vol 617.65 ± 154.99 mL vs 625.26 ± 153.55 mL (P =.21), SUVmean 0.69 ± 0.15 vs 0.69 ± 0.15 (P =.26), SUVmax 2.68 ± 0.86 vs 2.77 ± 1.05 (P =.34), and SUVtotal 425.51 ± 138.93 vs 427.91 ± 132.68 (P =.62). Limits of agreement were − 89.42 to 74.2, − 0.02 to 0.02, − 1.52 to 1.32, and − 68.02 to 63.21, respectively. Manual segmentation lasted typically 30 minutes vs about one minute with the CNN-based approach. The maximal deviation at manual re-segmentation was for the four parameters 0% to 0.5% with the same and 0% to 1% with different operators. Conclusion: The CNN-based method was faster and provided values for Vol, SUVmean, SUVmax, and SUVtotal comparable to the manually obtained ones. This AI-based segmentation approach appears to offer a more reproducible and much faster substitute for slow and cumbersome manual segmentation of the heart.

heart

sodium fluoride

artificial intelligence

microcalcification

PET/CT

atherosclerosis

Författare

Reza Piri

Odense Universitetshospital

Syddansk Universitet

L. Edenbrandt

Sahlgrenska universitetssjukhuset

Göteborgs universitet

Måns Larsson

Eigenvision AB

Olof Enqvist

Digitala bildsystem och bildanalys

Eigenvision AB

Sofie Skovrup

Odense Universitetshospital

Kasper Karmark Iversen

Amtssygehuset i Gentofte

Babak Saboury

Hospital of the University of Pennsylvania

University of Maryland

NIH Clinical Center (CC)

Abass Alavi

Hospital of the University of Pennsylvania

Oke Gerke

Odense Universitetshospital

Syddansk Universitet

P. F. Hoilund-Carlsen

Odense Universitetshospital

Syddansk Universitet

Journal of Nuclear Cardiology

1071-3581 (ISSN) 1532-6551 (eISSN)

Vol. 29 5 2531-2539

Ämneskategorier (SSIF 2011)

Medicinsk laboratorie- och mätteknik

Radiologi och bildbehandling

Medicinsk bildbehandling

DOI

10.1007/s12350-021-02758-9

PubMed

34386861

Mer information

Senast uppdaterat

2023-01-18