A Survey on Semantics and Understanding of Human Activities
Artikel i vetenskaplig tidskrift, 2019

This paper presents semantic-based methods for the understanding of human movements in robotic applications. To understand human movements, robots need to first, recognize the observed or demonstrated human activities, and secondly, learn different parameters to execute an action or robot behavior. In order to achieve that, several challenges need to be addressed such as the automatic segmentation of human activities, identification of important features of actions, determine the correct sequencing between activities, and obtain the correct mapping between the continuous data and the symbolic and semantic interpretations of the human movements. This paper aims to present state-of-the-art semantic-based approaches, especially the new emerging approaches that tackle the challenges of finding generic and compact semantic models for the robotics domain. Finally, we will highlight potential breakthroughs and challenges for the next years such as achieving scalability, better generalization, compact and flexible models, and higher system accuracy.

Författare

Karinne Ramirez-Amaro

Technische Universität München

Yezhou Yang

Arizona State University

Gordon Cheng

Technische Universität München

Robotics and Autonomous Systems

0921-8890 (ISSN)

Vol. 119 31-50

Ämneskategorier

Annan data- och informationsvetenskap

Robotteknik och automation

Datavetenskap (datalogi)

DOI

10.1016/j.robot.2019.05.013

Relaterade dataset

DOI: 10.1016/j.robot.2019.05.013

Mer information

Senast uppdaterat

2021-11-25