Synergistic Effect of Multi-Walled Carbon Nanotubes and Ladder-Type Conjugated Polymers on the Performance of N-Type Organic Electrochemical Transistors
Artikel i vetenskaplig tidskrift, 2021

Organic electrochemical transistors (OECTs) have the potential to revolutionize the field of organic bioelectronics. To date, most of the reported OECTs include p-type (semi-)conducting polymers as the channel material, while n-type OECTs are yet at an early stage of development, with the best performing electron-transporting materials still suffering from low transconductance, low electron mobility, and slow response time. Here, the high electrical conductivity of multi-walled carbon nanotubes (MWCNTs) and the large volumetric capacitance of the ladder-type π-conjugated redox polymer poly(benzimidazobenzophenanthroline) (BBL) are leveraged to develop n-type OECTs with record-high performance. It is demonstrated that the use of MWCNTs enhances the electron mobility by more than one order of magnitude, yielding fast transistor transient response (down to 15 ms) and high μC* (electron mobility × volumetric capacitance) of about 1 F cm−1 V−1 s−1. This enables the development of complementary inverters with a voltage gain of >16 and a large worst-case noise margin at a supply voltage of <0.6 V, while consuming less than 1 µW of power.

organic mixed ion-electron conductors

n-type organic electrochemical transistors

carbon nanotubes

ladder-type polymers

Författare

Silan Zhang

Linköpings universitet

Matteo Massetti

Linköpings universitet

Tero Petri Ruoko

Linköpings universitet

Deyu Tu

Linköpings universitet

Chi Yuan Yang

Linköpings universitet

X. J. Liu

Linköpings universitet

Ziang Wu

Korea University

Yoonjoo Lee

Korea University

Renee Kroon

Linköpings universitet

Per O.Å. Persson

Linköpings universitet

Han Young Woo

Korea University

M. Berggren

Linköpings universitet

Christian Müller

Chalmers, Kemi och kemiteknik, Tillämpad kemi, Christian Müller Group

M. Fahlman

Linköpings universitet

S. Fabiano

Linköpings universitet

Advanced Functional Materials

1616-301X (ISSN)

Vol. In Press

Ämneskategorier

Textil-, gummi- och polymermaterial

Materialkemi

Den kondenserade materiens fysik

DOI

10.1002/adfm.202106447

Mer information

Senast uppdaterat

2021-10-14