Non-equilibrium diffusion of dark excitons in atomically thin semiconductors
Artikel i vetenskaplig tidskrift, 2021

Atomically thin semiconductors provide an excellent platform to study intriguing many-particle physics of tightly-bound excitons. In particular, the properties of tungsten-based transition metal dichalcogenides are determined by a complex manifold of bright and dark exciton states. While dark excitons are known to dominate the relaxation dynamics and low-temperature photoluminescence, their impact on the spatial propagation of excitons has remained elusive. In our joint theory-experiment study, we address this intriguing regime of dark state transport by resolving the spatio-temporal exciton dynamics in hBN-encapsulated WSe2 monolayers after resonant excitation. We find clear evidence of an unconventional, time-dependent diffusion during the first tens of picoseconds, exhibiting strong deviation from the steady-state propagation. Dark exciton states are initially populated by phonon emission from the bright states, resulting in creation of hot (unequilibrated) excitons whose rapid expansion leads to a transient increase of the diffusion coefficient by more than one order of magnitude. These findings are relevant for both fundamental understanding of the spatio-temporal exciton dynamics in atomically thin materials as well as their technological application by enabling rapid diffusion.

Författare

Roberto Rosati

Philipps-Universität Marburg

Koloman Wagner

Technische Universität Dresden

Universität Regensburg

Samuel Brem

Philipps-Universität Marburg

Raul Perea Causin

2D-Tech

Chalmers, Fysik, Kondenserad materie- och materialteori

Jonas D. Ziegler

Technische Universität Dresden

Universität Regensburg

Jonas Zipfel

Lawrence Berkeley National Laboratory

Universität Regensburg

Takashi Taniguchi

National Institute for Materials Science (NIMS)

Kenji Watanabe

National Institute for Materials Science (NIMS)

Alexey Chernikov

Technische Universität Dresden

Universität Regensburg

Ermin Malic

Chalmers, Fysik, Kondenserad materie- och materialteori

2D-Tech

Philipps-Universität Marburg

Nanoscale

2040-3364 (ISSN) 2040-3372 (eISSN)

Vol. 13 47 19966-19972

2D material-baserad teknologi för industriella applikationer (2D-TECH)

VINNOVA (2019-00068), 2020-05-01 -- 2024-12-31.

GKN Aerospace Sweden (2D-tech), 2021-01-01 -- 2024-12-31.

Graphene Core Project 3 (Graphene Flagship)

Europeiska kommissionen (EU) (EC/H2020/881603), 2020-04-01 -- 2023-03-31.

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Den kondenserade materiens fysik

DOI

10.1039/d1nr06230a

PubMed

34821228

Mer information

Senast uppdaterat

2024-02-29