Patterns in sets of positive density in trees and affine buildings
Artikel i vetenskaplig tidskrift, 2021

We prove an analogue for homogeneous trees and certain affine buildings of a result of Bourgain on pinned distances in sets of positive density in Euclidean spaces. Furthermore, we construct an example of a non-homogeneous tree with positive Hausdorff dimension, and a subset with positive density thereof, in which not all sufficiently large (even) distances are realised.

Density

Ramsey theory on trees and buildings

Författare

Michael Björklund

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Alexander Fish

The University of Sydney

James Parkinson

The University of Sydney

Groups, Geometry, and Dynamics

1661-7207 (ISSN) 1661-7215 (eISSN)

Vol. 15 4 1267-1295

Ämneskategorier

Algebra och logik

Geometri

Matematisk analys

DOI

10.4171/GGD/630

Mer information

Senast uppdaterat

2022-09-28