Design of clean steel production with hydrogen: Impact of electricity system composition
Artikel i vetenskaplig tidskrift, 2021

In Europe, electrification is considered a key option to obtain a cleaner production of steel at the same time as the electricity system production portfolio is expected to consist of an increasing share of varying renewable electricity (VRE) generation, mainly in the form of solar PV and wind power. We investigate cost-efficient designs of hydrogen-based steelmaking in electricity systems dominated by VRE. We develop and apply a linear cost-minimization model with an hourly time resolution, which determines cost-optimal operation and sizing of the units in hydrogen-based steelmaking including an electrolyser, direct reduction shaft, electric arc furnace, as well as storage for hydrogen and hot-briquetted iron pellets. We show that the electricity price following steelmaking leads to savings in running costs but to increased capital cost due to investments in the overcapacity of steel production units and storage units for hydrogen and hot-briquetted iron pellets. For two VRE-dominated regions, we show that the electricity price following steel production reduces the total steel production cost by 23% and 17%, respectively, as compared to continuous steel production at a constant level. We also show that the cost-optimal design of the steelmaking process is dependent upon the electricity system mix.

Electrification of industry

Modelling and optimization

Renewable energy sources (RESs)

Steel industry

Decarbonization

Hydrogen storage

Författare

Alla Toktarova

Chalmers, Rymd-, geo- och miljövetenskap, Energiteknik

Lisa Göransson

Chalmers, Rymd-, geo- och miljövetenskap, Energiteknik

Filip Johnsson

Chalmers, Rymd-, geo- och miljövetenskap, Energiteknik

Energies

1996-1073 (ISSN) 19961073 (eISSN)

Vol. 14 24 8349

Ämneskategorier

Annan naturresursteknik

Energisystem

Annan elektroteknik och elektronik

DOI

10.3390/en14248349

Mer information

Senast uppdaterat

2021-12-30