Dark exciton-exciton annihilation in monolayer WSe2
Artikel i vetenskaplig tidskrift, 2021

The exceptionally strong Coulomb interaction in semiconducting transition-metal dichalcogenides (TMDs) gives rise to a rich exciton landscape consisting of bright and dark exciton states. At elevated densities, excitons can interact through exciton-exciton annihilation (EEA), an Auger-like recombination process limiting the efficiency of optoelectronic applications. Although EEA is a well-known and particularly important process in atomically thin semiconductors determining exciton lifetimes and affecting transport at elevated densities, its microscopic origin has remained elusive. In this joint theory-experiment study combining microscopic and material-specific theory with time- and temperature-resolved photoluminescence measurements, we demonstrate the key role of dark intervalley states that are found to dominate the EEA rate in monolayer WSe2. We reveal an intriguing, characteristic temperature dependence of Auger scattering in this class of materials with an excellent agreement between theory and experiment. Our study provides microscopic insights into the efficiency of technologically relevant Auger scattering channels within the remarkable exciton landscape of atomically thin semiconductors.

Författare

Daniel Erkensten

Chalmers, Fysik, Kondenserad materie- och materialteori

Samuel Brem

Philipps-Universität Marburg

Koloman Wagner

Technische Universität Dresden

Universität Regensburg

Roland Gillen

Friedrich-Alexander-Universität Erlangen Nurnberg (FAU)

Raul Perea Causin

Chalmers, Fysik, Kondenserad materie- och materialteori

2D-Tech

Jonas D. Ziegler

Technische Universität Dresden

Universität Regensburg

Takashi Taniguchi

National Institute for Materials Science (NIMS)

Kenji Watanabe

National Institute for Materials Science (NIMS)

Janina Maultzsch

Friedrich-Alexander-Universität Erlangen Nurnberg (FAU)

Alexey Chernikov

Technische Universität Dresden

Universität Regensburg

Ermin Malic

Philipps-Universität Marburg

Chalmers, Fysik, Kondenserad materie- och materialteori

2D-Tech

Physical Review B

2469-9950 (ISSN) 2469-9969 (eISSN)

Vol. 104 24 L241406

2D material-baserad teknologi för industriella applikationer (2D-TECH)

GKN Aerospace Sweden (2D-tech), 2021-01-01 -- 2024-12-31.

VINNOVA (2019-00068), 2020-05-01 -- 2024-12-31.

Graphene Core Project 3 (Graphene Flagship)

Europeiska kommissionen (EU) (EC/H2020/881603), 2020-04-01 -- 2023-03-31.

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Den kondenserade materiens fysik

DOI

10.1103/PhysRevB.104.L241406

Mer information

Senast uppdaterat

2024-02-29