Homogeneous Lean Combustion in Downsized Spark-Ignited Engines
Doktorsavhandling, 2022

Emissions of greenhouse-gasses and noxious compounds from internal combustion engines propelling personal transportation vehicles is an imminent issue in the society. Therefore, it is vital to find means of reducing these emissions to decrease the impacts of transportation. Despite the current rapid electrification of the light duty vehicle fleet, it is expected that there will still be a substantial share of vehicles, produced and sold, that are propelled either solely or partly by combustion engines in the next decades to come. An advantage of combustion engines is that they consume hydrocarbon fuels, which are energy dense and can be produced from renewable sources enabling elimination of net carbon emissions. These fuels can be distributed using the current infrastructure, allowing for a fast transition into a low-carbon transportation system. The sources of renewables are however limited, and production of renewable fuels requires energy, which is why the fuel efficiency of combustion engines is key.

This thesis addresses the need for reduced emissions from personal transportation vehicles by investigating homogeneous lean combustion in downsized spark-ignited engines as a means of improving combustion engine fuel efficiency. Lean combustion offers substantial efficiency improvements to the current already well-developed combustion systems. However, historically, it has been proven difficult to achieve robust lean combustion that achieves both efficiency improvements and sufficiently low emissions of nitrogen oxides. In this thesis, the focus has been to investigate the potentially synergetic combination of high engine loads above 10 bar brake mean effective pressure, a common attribute of downsized engines, and lean combustion. The idea is that lean combustion reduces knocking combustion, a harmful event that limits engine efficiency due to cylinder pressure limitations. Simultaneously, it is hypothesized that higher engine loads will lead to faster and more stable combustion, allowing important reductions in nitrogen oxides.

Using engine experiments and simulations, homogeneous lean combustion has been investigated. From the experiments it could be concluded that lean combustion can be sustained at high loads. One of the world’s first two-stage turbochargers designed solely for lean combustion was utilized for this purpose and found to be successful. However, it was discovered that lean combustion does not eliminate knocking combustion completelyKeywords: engine, efficiency, emissions, lean, combustion, nor did high load operation eliminate cyclic dispersion of combustion, which imposes limitations. Using improved in-cylinder charge motion and alternative fuels, these limitations can be mitigated, allowing for stable, efficient, low nitrogen oxide high load lean combustion.

Energy efficiency

lean combustion

emissons

transportation

SB-H5
Opponent: Doktor Magnus Sjöberg, Sandia National Laboritories, California, USA

Författare

Kristoffer Clasén

Chalmers, Mekanik och maritima vetenskaper, Förbränning och framdrivningssystem

Influence of Trapped Residual Gasses in Air-Diluted Spark Ignited Combustion

SAE International Journal of Engines,; Vol. 15(2022)p. 849-881

Artikel i vetenskaplig tidskrift

Investigation of Homogeneous Lean SI Combustion in High Load Operating Conditions

SAE International Journal of Advances & Current Practices in Mobility,; Vol. 2(2020)p. 2051-2066

Artikel i vetenskaplig tidskrift

Homogeneous Lean Combustion in a 2lt Gasoline Direct Injected Engine with an Enhanced Turbo Charging System

SAE Technical Papers,; Vol. 2018-September(2018)

Artikel i vetenskaplig tidskrift

Hur ökad luftmängd i moderna motorer kan minska bilars miljöpåverkan

Majoriteten av världens alla bilar, nya som gamla, är försedda med bensinmotorer. Utsläppen från dessa motorer bidrar till föroreningar och global uppvärmning. Ett sätt att minska bilars miljöpåverkan är att minska bränsleförbrukningen, vilket kan åstadkommas genom att tillsätta extra luft i motorn, så kallad mager förbränning. Överskottsluften i motorn gör att framför allt värmeförlusterna minskar vilket gör att upp till en femtedel mer av bränsleenergin omvandlas till framdrift. Nackdelen med detta är att motorn i stället börjar producera en skadlig biprodukt, kväveoxider (NOx). För att minimera NOx måste stora mängder luft tillsättas vilket gör att förbränningen i motorn blir svag och instabil, vilket leder till misständningar.

Denna avhandling undersöker en potentiellt samverkande effekt av att använda mager förbränning i moderna nerskalade motorer. Dessa motorer arbetar vid högre temperaturer, vilket teoretiskt kan minska misständningar vid väldigt mager förbränning. Kylningen från den extra luften kan dessutom minska risken för självantändning i motorn, så kallat knack, vilket är ett stort problem i denna motortyp. Experimentella motortester och simuleringar har kunnat visa att mager förbränning fungerar i nerskalade motorer och kan minska självantändning, men att misständningar kvarstår. Experimenten har också visat att förstärkt luftflöde i motorns cylindrar kan minska misständningar genom att bränslet förbränns snabbare och jämnare, vilket minskar NOx till låga nivåer.

Drivkrafter

Hållbar utveckling

Styrkeområden

Transport

Energi

Ämneskategorier

Energiteknik

Farkostteknik

ISBN

978-91-7905-614-8

Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 5080

Utgivare

Chalmers

SB-H5

Online

Opponent: Doktor Magnus Sjöberg, Sandia National Laboritories, California, USA

Mer information

Senast uppdaterat

2022-02-24