Experimental and computational characterization of carbon fibre based structural battery electrode laminae
Artikel i vetenskaplig tidskrift, 2022

In this paper, electrode laminae consisting of carbon fibres embedded in structural battery electrolyte (CF-SBE electrodes) are characterized with respect to their multifunctional (i.e. combined electrochemical and mechanical) performance utilizing experimental and numerical techniques. The studied material is made from commercially available polyacrylonitrile (PAN)-based carbon fibres and a porous SBE matrix/electrolyte, which is composed of two continuous phases: a solid polymer skeleton (vinyl ester-based) and a Li-salt containing liquid electrolyte. Experimental and numerical studies are performed on CF-SBE electrode half-cells, whereby a coupled electro-chemo-mechanical finite element model is exploited. Results show that, similar to traditional batteries,
electrode thickness, transport properties of the electrolyte and applied current significantly affect electrochemical performance. For example, increasing the electrode thickness of the studied CF-SBE electrode from 50 μm to 200 μm results in a reduction in specific capacity of approximately 70/95% for an applied current of 30/120 mA g􀀀 1 of fibres, respectively. Further, Li-insertion induced longitudinal expansion of carbon fibre electrodesare video microscopically recorded during charge/discharge conditions. In liquid electrolyte the total/reversible longitudinal expansion are found to be 0.85/0.8% while for the CF-SBE electrode the reversible expansion is found to be 0.6%. The fibre expansion in the CF-SBE electrode gives rise to residual strains which is demonstrated numerically. We expect that the utilized computational framework and experimental data open a route to develop high-performing, both mechanically and electrochemically, carbon fibre based battery electrode laminae for future lightweight structural components with energy storage ability.

Multifunctional composites

Biomimetics

Electro-chemical behaviour

Carbon fibres

Electro-mechanical behaviour

Författare

David Carlstedt

2D-Tech

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Florian Rittweger

Hochschule für Angewandte Wissenschaften Hamburg

Kenneth Runesson

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Adriana Navarro Suárez

Chalmers, Fysik, Materialfysik

Johanna Xu

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

2D-Tech

Shanghong Duan

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Fredrik Larsson

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

Karl-Ragmar Riemschneider

Hochschule für Angewandte Wissenschaften Hamburg

Leif Asp

Chalmers, Industri- och materialvetenskap, Material- och beräkningsmekanik

2D-Tech

Composites Science and Technology

0266-3538 (ISSN)

Vol. 220 109283

Structural pOweR CompositEs foR futurE civil aiRcraft (SORCERER)

Europeiska kommissionen (EU) (EC/H2020/738085), 2017-02-01 -- 2020-02-28.

Realising Structural Battery Composites

European Office of Aerospace Research and Development (EOARD) (FA8655-21-1-7038), 2021-08-01 -- 2024-07-31.

Strukturella batterikompositer för viktlös energilagring

Rymdstyrelsen (2020-00256), 2021-01-01 -- 2023-12-31.

2D material-baserad teknologi för industriella applikationer (2D-TECH)

VINNOVA (2019-00068), 2020-05-01 -- 2024-12-31.

GKN Aerospace Sweden (2D-tech), 2021-01-01 -- 2024-12-31.

Drivkrafter

Hållbar utveckling

Innovation och entreprenörskap

Styrkeområden

Transport

Energi

Materialvetenskap

Ämneskategorier

Teknisk mekanik

Farkostteknik

Kompositmaterial och -teknik

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

Chalmers materialanalyslaboratorium

DOI

10.1016/j.compscitech.2022.109283

Mer information

Senast uppdaterat

2024-02-29