Spi-OPS: Spitzer and CHEOPS confirm the near-polar orbit of MASCARA-1 b and reveal a hint of dayside reflection
Artikel i vetenskaplig tidskrift, 2022

Context. The light curves of tidally locked hot Jupiters transiting fast-rotating, early-type stars are a rich source of information about both the planet and star, with full-phase coverage enabling a detailed atmospheric characterisation of the planet. Although it is possible to determine the true spin-orbit angle ψ-a notoriously difficult parameter to measure-from any transit asymmetry resulting from gravity darkening induced by the stellar rotation, the correlations that exist between the transit parameters have led to large disagreements in published values of ψ for some systems. Aims. We aimed to study these phenomena in the light curves of the ultra-hot Jupiter MASCARA-1 b, which is characteristically similar to well-studied contemporaries such as KELT-9 b and WASP-33 b. Methods. We obtained optical CHaracterising ExOPlanet Satellite (CHEOPS) transit and occultation light curves of MASCARA-1 b, and analysed them jointly with a Spitzer/IRAC 4.5 μm full-phase curve to model the asymmetric transits, occultations, and phase-dependent flux modulation. For the latter, we employed a novel physics-driven approach to jointly fit the phase modulation by generating a single 2D temperature map and integrating it over the two bandpasses as a function of phase to account for the differing planet-star flux contrasts. The reflected light component was modelled using the general ab initio solution for a semi-infinite atmosphere. Results. When fitting the CHEOPS and Spitzer transits together, the degeneracies are greatly diminished and return results consistent with previously published Doppler tomography. Placing priors informed by the tomography achieves even better precision, allowing a determination of ψ = 72.1-2.4+2.5 deg. From the occultations and phase variations, we derived dayside and nightside temperatures of 3062-68+66 K and 1720 ± 330 K, respectively.Our retrieval suggests that the dayside emission spectrum closely follows that of a blackbody. As the CHEOPS occultation is too deep to be attributed to blackbody flux alone, we could separately derive geometric albedo Ag = 0.171-0.068+0.066 and spherical albedo As = 0.266-0.100+0.097 from the CHEOPS data, and Bond albedoAB = 0.057-0.101+0.083 from the Spitzer phase curve.Although small, the Ag and As indicate that MASCARA-1 b is more reflective than most other ultra-hot Jupiters, where H- absorption is expected to dominate. Conclusions. Where possible, priors informed by Doppler tomography should be used when fitting transits of fast-rotating stars, though multi-colour photometry may also unlock an accurate measurement of ψ. Our approach to modelling the phase variations at different wavelengths provides a template for how to separate thermal emission from reflected light in spectrally resolved James Webb Space Telescope phase curve data.

Planets and satellites: atmospheres

Techniques: photometric

Planets and satellites: physical evolution

Planets and satellites: individual: MASCARA-1 b

Författare

M.J. Hooton

Universität Bern

S. Hoyer

Laboratoire d'Astrophysique de Marseille

D. Kitzmann

Universität Bern

Brett M. Morris

Universität Bern

A. M.S. Smith

Deutsches Zentrums für Luft- und Raumfahrt (DLR)

A. Collier Cameron

University of St Andrews

D. Futyan

Université de Genève

P. Maxted

Keele University

D. Queloz

University of Cambridge

Université de Genève

B.O. Demory

Universität Bern

Kevin Heng

Universität Bern

The University of Warwick

M. Lendl

Université de Genève

J. Cabrera

Deutsches Zentrums für Luft- und Raumfahrt (DLR)

Szilard Csizmadia

Deutsches Zentrums für Luft- und Raumfahrt (DLR)

A. Deline

Université de Genève

H. Parviainen

Instituto de Astrofísica de Canarias

S. Salmon

Université de Genève

S. Sulis

Laboratoire d'Astrophysique de Marseille

T.G. Wilson

University of St Andrews

A. Bonfanti

Institut fur Weltraumforschung

A. Brandeker

Stockholms universitet

O. Demangeon

Universidade do Porto

M. Oshagh

Instituto de Astrofísica de Canarias

Carina Persson

Chalmers, Rymd-, geo- och miljövetenskap, Astronomi och plasmafysik

Gaetano Scandariato

Istituto nazionale di astrofisica (INAF)

Y. Alibert

Universität Bern

R. Alonso

Instituto de Astrofísica de Canarias

Universidad de la Laguna

G. Anglada Escude´

Institut de Ciències de l'Espai (ICE) - CSIC

Institut d'Estudis Espacials de Catalunya (IEEC)

T. Bárczy

Admatis

D. Barrado

Centro de Astrobiologia (CAB)

S. C.C. Barros

Universidade do Porto

W. Baumjohann

Institut fur Weltraumforschung

M. Beck

Université de Genève

T. Beck

Universität Bern

W. Benz

Universität Bern

N. Billot

Université de Genève

X. Bonfils

Université Grenoble Alpes

V. Bourrier

Université de Genève

C. Broeg

Universität Bern

M.-D. Busch

Universität Bern

S. Charnoz

Université Paris Descartes

M. B. Davies

Lunds universitet

M. Deleuil

Laboratoire d'Astrophysique de Marseille

L. Delrez

Universite de Liège

Université de Genève

D. Ehrenreich

Université de Genève

Anders Erikson

Deutsches Zentrums für Luft- und Raumfahrt (DLR)

J. Farinato

Istituto nazionale di astrofisica (INAF)

A. Fortier

Universität Bern

L. Fossati

Institut fur Weltraumforschung

Malcolm Fridlund

Universiteit Leiden

D. Gandolfi

Universita degli Studi di Torino

Michaël Gillon

Universite de Liège

M. Gudel

Universität Wien

K. Isaak

European Space Research and Technology Centre (ESA ESTEC)

K. Jones

Universität Bern

L.L. Kiss

The University of Sydney

Magyar Tudomanyos Akademia

Eötvös Loránd University (ELTE)

J. Laskar

Observatoire de Paris

A. L. des Etangs

Institut d 'Astrophysique de Paris

C. Lovis

Université de Genève

A. Luntzer

Universität Wien

D. Magrin

Istituto nazionale di astrofisica (INAF)

Valerio Nascimbeni

Istituto nazionale di astrofisica (INAF)

G. Olofsson

Stockholms universitet

R. Ottensamer

Universität Wien

I. Pagano

Istituto nazionale di astrofisica (INAF)

Enric Palle

Instituto de Astrofísica de Canarias

G. Peter

Deutsches Zentrums für Luft- und Raumfahrt (DLR)

Giampaolo P. Piotto

Università di Padova

Istituto nazionale di astrofisica (INAF)

Don L. Pollacco

The University of Warwick

Roberto Ragazzoni

Istituto nazionale di astrofisica (INAF)

Università di Padova

N. Rando

European Space Research and Technology Centre (ESA ESTEC)

F. Ratti

European Space Research and Technology Centre (ESA ESTEC)

H. Rauer

Technische Universität Berlin

Deutsches Zentrums für Luft- und Raumfahrt (DLR)

Freie Universität Berlin

I. Ribas

Institut d'Estudis Espacials de Catalunya (IEEC)

Institut de Ciències de l'Espai (ICE) - CSIC

N. C. Santos

Universidade do Porto

D. Segransan

Université de Genève

A.E. Simon

Universität Bern

S. G. Sousa

Universidade do Porto

Manfred B. Steller

Institut fur Weltraumforschung

Gy M. Szabó

Eötvös Loránd University (ELTE)

Nicolas Thomas

Universität Bern

S. Udry

Université de Genève

B. Ulmer

Ingenieurbüro Ulmer - Technische Informatik

V. Van Grootel

Universite de Liège

N. A. Walton

University of Cambridge

Astronomy and Astrophysics

0004-6361 (ISSN) 1432-0746 (eISSN)

Vol. 658 A75

Satellitstudier av exoplaneters mångfald

Rymdstyrelsen (174/18), 2019-02-04 -- 2023-08-01.

Ämneskategorier

Astronomi, astrofysik och kosmologi

Annan fysik

Den kondenserade materiens fysik

DOI

10.1051/0004-6361/202141645

Mer information

Senast uppdaterat

2023-09-15