High-resolution VLBI Observations of and Modeling the Radio Emission from the Tidal Disruption Event AT2019dsg
Artikel i vetenskaplig tidskrift, 2022
A tidal disruption event (TDE) involves the shredding of a star in the proximity of a supermassive black hole (SMBH). The nearby (approximate to 230 Mpc) relatively radio-quiet, thermal-emission-dominated source AT2019dsg is the first TDE with a potential neutrino association. The origin of nonthermal emission remains inconclusive; possibilities include a relativistic jet or a subrelativistic outflow. Distinguishing between them can address neutrino production mechanisms. High-resolution very long baseline interferometry 5 GHz observations provide a proper motion of 0.94 +/- 0.65 mas yr(-1) (3.2 +/- 2.2 c; 1 sigma). Modeling the radio emission favors an origin from the interaction between a decelerating outflow (velocity approximate to 0.1 c) and a dense circumnuclear medium. The transition of the synchrotron self-absorption frequency through the observation band marks a peak flux density of 1.19 +/- 0.18 mJy at 152.8 +/- 16.2 days. An equipartition analysis indicates an emission-region distance of >= 4.7 x 10(16) cm, magnetic field strength >= 0.17 G, and number density >= 5.7 x 10(3) cm(-3). The disruption involves a approximate to 2 M (circle dot) star with a penetration factor approximate to 1 and a total energy output of <= 1.5 x 10(52) erg. The outflow is radiatively driven by the accretion of stellar debris onto the SMBH. Neutrino production is likely related to the acceleration of protons to peta-electron-volt energies and the availability of a suitable cross section at the outflow base. The present study thus helps exclude jet-related origins for nonthermal emission and neutrino production, and constrains nonjetted scenarios.