Microscopic modeling of exciton-polariton diffusion coefficients in atomically thin semiconductors
Artikel i vetenskaplig tidskrift, 2022

In the strong light-matter coupling regime realized, e.g., by integrating semiconductors into optical microcavities, polaritons as new hybrid light-matter quasiparticles are formed. The corresponding change in the dispersion relation has a large impact on optics, dynamics, and transport behavior of semiconductors. In this paper, we investigate the strong-coupling regime in hBN-encapsulated MoSe2 monolayers focusing on exciton-polariton diffusion. Applying a microscopic approach based on the exciton density matrix formalism combined with the Hopfield approach, we predict a drastic increase of the diffusion coefficients by two to three orders of magnitude in the strong-coupling regime. We explain this behavior by the much larger polariton group velocity and suppressed polariton-phonon scattering channels with respect to the case of bare excitons. Our study contributes to a better microscopic understanding of polariton diffusion in atomically thin semiconductors.

Författare

Beatriz Ferreira

Chalmers, Fysik, Kondenserad materie- och materialteori

Roberto Rosati

Philipps-Universität Marburg

Ermin Malic

Chalmers, Fysik, Kondenserad materie- och materialteori

Philipps-Universität Marburg

Physical Review Materials

24759953 (eISSN)

Vol. 6 3 034008

Plasmon-exciton coupling at the attosecond-subnanometer scale: Tailoring strong light-matter interactions at room temperature

Knut och Alice Wallenbergs Stiftelse (2019.0140), 2020-07-01 -- 2025-06-30.

Graphene Core Project 3 (Graphene Flagship)

Europeiska kommissionen (EU) (EC/H2020/881603), 2020-04-01 -- 2023-03-31.

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Den kondenserade materiens fysik

DOI

10.1103/PhysRevMaterials.6.034008

Mer information

Senast uppdaterat

2022-04-14