Higher Order Deformed Elliptic Ruijsenaars Operators
Artikel i vetenskaplig tidskrift, 2022

We present four infinite families of mutually commuting difference operators which include the deformed elliptic Ruijsenaars operators. The trigonometric limit of this kind of operators was previously introduced by Feigin and Silantyev. They provide a quantum mechanical description of two kinds of relativistic quantum mechanical particles which can be identified with particles and anti-particles in an underlying quantum field theory. We give direct proofs of the commutativity of our operators and of some other fundamental properties such as kernel function identities. In particular, we give a rigorous proof of the quantum integrability of the deformed Ruijsenaars model.

Författare

Martin Hallnäs

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Edwin Langmann

Kungliga Tekniska Högskolan (KTH)

Masatoshi Noumi

Kungliga Tekniska Högskolan (KTH)

Hjalmar Rosengren

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Communications in Mathematical Physics

0010-3616 (ISSN) 1432-0916 (eISSN)

Vol. 392 2 659-689

Kvasi-invarianter för ändliga Coxeter-grupper och integrabla system

Vetenskapsrådet (VR) (2018-04291), 2019-01-01 -- 2022-12-31.

Kombinatorik för elliptiska gittermodeller

Vetenskapsrådet (VR) (2020-04221), 2021-01-01 -- 2024-12-31.

Ämneskategorier

Geometri

Annan fysik

Matematisk analys

DOI

10.1007/s00220-022-04360-7

Mer information

Senast uppdaterat

2024-03-07