Benchmarking Advantage and D-Wave 2000Q quantum annealers with exact cover problems
Artikel i vetenskaplig tidskrift, 2022

We benchmark the quantum processing units of the largest quantum annealers to date, the 5000 + qubit quantum annealer Advantage and its 2000+ qubit predecessor D-Wave 2000Q, using tail assignment and exact cover problems from aircraft scheduling scenarios. The benchmark set contains small, intermediate, and large problems with both sparsely connected and almost fully connected instances. We find that Advantage outperforms D-Wave 2000Q for almost all problems, with a notable increase in success rate and problem size. In particular, Advantage is also able to solve the largest problems with 120 logical qubits that D-Wave 2000Q cannot solve anymore. Furthermore, problems that can still be solved by D-Wave 2000Q are solved faster by Advantage. We find, however, that D-Wave 2000Q can achieve better success rates for sparsely connected problems that do not require the many new couplers present on Advantage, so improving the connectivity of a quantum annealer does not per se improve its performance.

Quantum computing

Benchmarking

Optimization problems

Quantum annealing

Författare

Dennis Willsch

Forschungszentrum Jülich

Madita Willsch

Forschungszentrum Jülich

AIDAS

Carlos D. Gonzalez Calaza

Forschungszentrum Jülich

Fengping Jin

Forschungszentrum Jülich

Hans De Raedt

Rijksuniversiteit Groningen

Forschungszentrum Jülich

Marika Svensson

Jeppesen Systems AB

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Kristel Michielsen

RWTH Aachen University

AIDAS

Forschungszentrum Jülich

Quantum Information Processing

1570-0755 (ISSN) 15731332 (eISSN)

Vol. 21 4 141

An Open Superconducting Quantum Computer (OpenSuperQ)

Europeiska kommissionen (EU) (EC/H2020/820363), 2018-10-01 -- 2021-09-30.

Wallenberg Centre for Quantum Technology (WACQT)

Knut och Alice Wallenbergs Stiftelse (KAW 2017.0449, KAW2021.0009, KAW2022.0006), 2018-01-01 -- 2030-03-31.

Ämneskategorier (SSIF 2011)

Beräkningsmatematik

Annan matematik

Diskret matematik

DOI

10.1007/s11128-022-03476-y

Mer information

Senast uppdaterat

2025-01-14