ATOMIUM: ALMA tracing the origins of molecules in dust forming oxygen rich M-type stars: Motivation, sample, calibration, and initial results
Artikel i vetenskaplig tidskrift, 2022

This overview paper presents atomium, a Large Programme in Cycle 6 with the Atacama Large Millimeter/submillimeter Array (ALMA). The goal of atomium is to understand the dynamics and the gas phase and dust formation chemistry in the winds of evolved asymptotic giant branch (AGB) and red supergiant (RSG) stars. A more general aim is to identify chemical processes applicable to other astrophysical environments. Seventeen oxygen-rich AGB and RSG stars spanning a range in (circum)stellar parameters and evolutionary phases were observed in a homogeneous observing strategy allowing for an unambiguous comparison. Data were obtained between 213.83 and 269.71 GHz at high (0.025-0.050), medium (0.13-0.24), and low (~1) angular resolution. The sensitivity per ~1.3 km s-1 channel was 1.5-5 mJy beam-1, and the line-free channels were used to image the millimetre wave continuum. Our primary molecules for studying the gas dynamics and dust formation are CO, SiO, AlO, AlOH, TiO, TiO2, and HCN; secondary molecules include SO, SO2, SiS, CS, H2O, and NaCl. The scientific motivation, survey design, sample properties, data reduction, and an overview of the data products are described. In addition, we highlight one scientific result - the wind kinematics of the atomium sources. Our analysis suggests that the atomium sources often have a slow wind acceleration, and a fraction of the gas reaches a velocity which can be up to a factor of two times larger than previously reported terminal velocities assuming isotropic expansion. Moreover, the wind kinematic profiles establish that the radial velocity described by the momentum equation for a spherical wind structure cannot capture the complexity of the velocity field. In fifteen sources, some molecular transitions other than 12CO v = 0 J = 2 - 1 reach a higher outflow velocity, with a spatial emission zone that is often greater than 30 stellar radii, but much less than the extent of CO. We propose that a binary interaction with a (sub)stellar companion may (partly) explain the non-monotonic behaviour of the projected velocity field. The atomium data hence provide a crucial benchmark for the wind dynamics of evolved stars in single and binary star models.

Astrochemistry

Stars: AGB and post-AGB

Instrumentation: interferometers

Stars: mass-loss

Binaries: general

Circumstellar matter

Författare

C. A. Gottlieb

Harvard-Smithsonian Center for Astrophysics

L. Decin

University of Leeds

KU Leuven

A. M.S. Richards

University of Manchester

F. De Ceuster

University College London (UCL)

KU Leuven

W. Homan

KU Leuven

Sofia Wallström

KU Leuven

Taissa Danilovich

KU Leuven

T.J. Millar

Queen's University Belfast

M. Montargès

KU Leuven

Observatoire de Paris

K. T. Wong

Institut de Radioastronomie Millimétrique (IRAM)

I. McDonald

University of Manchester

Open University

A. Baudry

Université de Bordeaux

J. Bolte

KU Leuven

E. Cannon

KU Leuven

Elvire De Beck

Chalmers, Rymd-, geo- och miljövetenskap, Astronomi och plasmafysik

A. de Koter

KU Leuven

Anton Pannekoek Institute for Astronomy

I. El Mellah

KU Leuven

Departement Wiskunde

S. Etoka

University of Manchester

D. Gobrecht

KU Leuven

M. Gray

University of Manchester

National Astronomical Research Institute of Thailand

F. Herpin

Université de Bordeaux

M. Jeste

Max-Planck-Gesellschaft

P. Kervella

Observatoire de Paris

Theo Khouri

Chalmers, Rymd-, geo- och miljövetenskap, Astronomi och plasmafysik

E. Lagadec

Observatoire de la Cote d'Azur

S. Maes

KU Leuven

J. Malfait

KU Leuven

K. Menten

Max-Planck-Gesellschaft

Holger Muller

Universität zu Köln

B. Pimpanuwat

National Astronomical Research Institute of Thailand

University of Manchester

J. M. C. Plane

University of Leeds

R. Sahai

Jet Propulsion Laboratory, California Institute of Technology

M. Van De Sande

University of Leeds

KU Leuven

Lbfm Waters

Netherlands Institute for Space Research (SRON)

Radboud Universiteit

J. A. Yates

University College London (UCL)

A. Zijlstra

University of Manchester

The University of Hong Kong

Astronomy and Astrophysics

0004-6361 (ISSN) 1432-0746 (eISSN)

Vol. 660 A94

Ämneskategorier

Astronomi, astrofysik och kosmologi

Atom- och molekylfysik och optik

Geofysik

DOI

10.1051/0004-6361/202140431

Mer information

Senast uppdaterat

2022-05-19