Steady-State Heat Transport and Work With a Single Artificial Atom Coupled to a Waveguide: Emission Without External Driving
Artikel i vetenskaplig tidskrift, 2022

We observe the continuous emission of photons into a waveguide from a superconducting qubit without the application of an external drive. To explain this counterintuitive observation, we build a two-bath model where the qubit couples simultaneously to a cold bath (the waveguide) and a hot bath (a secondary environment). Our results show that the thermal-photon occupation of the hot bath is up to 0.14 photons, 35 times larger than the cold waveguide, leading to nonequilibrium heat transport with a power of up to 132 zW, as estimated from the qubit emission spectrum. By adding more isolation between the sample output and the first cold amplifier in the output line, the heat transport is strongly suppressed. Our interpretation is that the hot bath may arise from active two-level systems being excited by noise from the output line, and that the qubit coherence can be improved significantly by suppressing this noise. We also apply a coherent drive, and use the waveguide to measure thermodynamic work and heat, suggesting waveguide spectroscopy is a useful means to study quantum heat engines and refrigerators. Finally, based on the theoretical model, we propose how a similar setup can be used as a noise spectrometer which provides a solution for calibrating the background noise of hybrid quantum systems.

Författare

Yong Lu

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Neill Lambert

RIKEN

Anton Frisk Kockum

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Ken Funo

RIKEN

Andreas Bengtsson

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Simone Gasparinetti

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

F. Nori

RIKEN

University of Michigan

Per Delsing

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

PRX Quantum

26913399 (eISSN)

Vol. 3 2 020305

Ämneskategorier

Energiteknik

Atom- och molekylfysik och optik

Annan fysik

DOI

10.1103/PRXQuantum.3.020305

Mer information

Senast uppdaterat

2022-05-16