Predicting Pedestrian Behavior in Urban Traffic Scenarios Using Deep Learning Methods
Licentiatavhandling, 2022
Marie Skłodowska-Curie Actions; Innovative Training Network (ITN); Project name: SHAPE-IT; Grant number: 860410; Publication date: 3 June 2023
deep learning
pedestrian trajectory prediction
social interaction
Automated driving
pedestrian behavior
urban traffic
pedestrian-vehicle interaction
Författare
Chi Zhang
Göteborgs universitet
Chi Zhang and Christian Berger. Pedestrian Behavior Prediction Using Deep Learning Methods for Urban Scenarios: A Review
Social-IWSTCNN: A social interaction-weighted spatio- temporal convolutional neural network for pedestrian trajectory prediction in urban traffic scenarios
IEEE Intelligent Vehicles Symposium, Proceedings,;Vol. 2021-July(2021)p. 1515-1522
Paper i proceeding
Learning the Pedestrian-Vehicle Interaction for Pedestrian Trajectory Prediction
2022 8th International Conference on Control, Automation and Robotics (ICCAR),;Vol. 2022-April(2022)p. 230-236
Paper i proceeding
Supporting the interaction of Humans and Automated vehicles: Preparing for the Environment of Tomorrow (Shape-IT)
Europeiska kommissionen (EU) (EC/H2020/860410), 2019-10-01 -- 2023-09-30.
Styrkeområden
Informations- och kommunikationsteknik
Transport
Ämneskategorier (SSIF 2011)
Transportteknik och logistik
Farkostteknik
Datorseende och robotik (autonoma system)
Utgivare
Göteborgs universitet
Jupiter322
Opponent: Prof. Maria Riveiro at the Department of Computing, School of Engineering, at Jönköping University
Relaterade dataset
Waymo Open Dataset [dataset]