Error-rate-agnostic decoding of topological stabilizer codes
Artikel i vetenskaplig tidskrift, 2022

Efficient high-performance decoding of topological stabilizer codes has the potential to crucially improve the balance between logical failure rates and the number and individual error rates of the constituent qubits. High-threshold maximum-likelihood decoders require an explicit error model for Pauli errors to decode a specific syndrome, whereas lower-threshold heuristic approaches such as minimum-weight matching are error agnostic. Here we consider an intermediate approach, formulating a decoder that depends on the bias, i.e., the relative probability of phase-flip to bit-flip errors, but is agnostic to error rate. Our decoder is based on counting the number and effective weight of the most likely error chains in each equivalence class of a given syndrome. We use Metropolis-based Monte Carlo sampling to explore the space of error chains and find unique chains that are efficiently identified using a hash table. Using the error-rate invariance, the decoder can sample chains effectively at an error rate which is higher than the physical error rate and without the need for thermalization between chains in different equivalence classes. Applied to the surface code and the XZZX code, the decoder matches maximum-likelihood decoders for moderate code sizes or low error rates. We anticipate that, because of the compressed information content per syndrome, it can be taken full advantage of in combination with machine-learning methods to extrapolate Monte Carlo-generated data.

Författare

Karl Hammar

Göteborgs universitet

Alexei Orekhov

Student vid Chalmers

Patrik Wallin Hybelius

Göteborgs universitet

Anna Katariina Wisakanto

Göteborgs universitet

Basudha Srivastava

Göteborgs universitet

Anton Frisk Kockum

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Mats Granath

Göteborgs universitet

Physical Review A

24699926 (ISSN) 24699934 (eISSN)

Vol. 105 4 042616

Ämneskategorier

Telekommunikation

Beräkningsmatematik

Sannolikhetsteori och statistik

DOI

10.1103/PhysRevA.105.042616

Mer information

Senast uppdaterat

2022-05-31