A pointwise norm on a non-reduced analytic space
Artikel i vetenskaplig tidskrift, 2022

Let X be a possibly non-reduced space of pure dimension. We introduce a pointwise Hermitian norm on smooth (0,q)-forms, in particular on holomorphic functions, on X. The norm is is canonical, up to equivalence, where the underlying reduced space is a manifold. We prove that the space of holomorphic functions is complete with respect to the natural topology induced by this norm.

Författare

Mats Andersson

Chalmers, Matematiska vetenskaper, Algebra och geometri

Journal of Functional Analysis

0022-1236 (ISSN) 1096-0783 (eISSN)

Vol. 283 4 109520

Ämneskategorier (SSIF 2011)

Matematisk analys

DOI

10.1016/j.jfa.2022.109520

Mer information

Senast uppdaterat

2022-09-28