Deterministic Gaussian conversion protocols for non-Gaussian single-mode resources
Artikel i vetenskaplig tidskrift, 2022

In the context of quantum technologies over continuous variables, Gaussian states and operations are typically regarded as freely available, as they are relatively easily accessible experimentally. In contrast, the generation of non-Gaussian states, as well as the implementation of non-Gaussian operations, pose significant challenges. This divide has motivated the introduction of resource theories of non-Gaussianity. As for any resource theory, it is of practical relevance to identify free conversion protocols between resources, namely, Gaussian conversion protocols between non-Gaussian states. Via systematic numerical investigations, we address the approximate conversion between experimentally relevant single-mode non-Gaussian states via arbitrary deterministic one-to-one mode Gaussian maps. First we show that cat and binomial states are approximately equivalent for finite energy, while this equivalence was previously known only in the infinite-energy limit. Then we consider the generation of cat states from photon-added and photon-subtracted squeezed states, improving over known schemes by introducing additional squeezing operations. The numerical tools that we develop also allow one to devise conversions of trisqueezed into cubic-phase states beyond previously reported performances. Finally, we identify various other conversions which instead are not viable.

Författare

Oliver Hahn

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Patric Holmvall

Uppsala universitet

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Pascal Stadler

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Giulia Ferrini

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

A. Ferraro

Queen's University Belfast

Universita' degli Studi di Milano

Physical Review A

24699926 (ISSN) 24699934 (eISSN)

Vol. 105 6 062446

Ämneskategorier

Beräkningsmatematik

Atom- och molekylfysik och optik

Annan fysik

DOI

10.1103/PhysRevA.105.062446

Mer information

Senast uppdaterat

2024-01-03