Semiconductor-based electron flying qubits: review on recent progress accelerated by numerical modelling
Reviewartikel, 2022

The progress of charge manipulation in semiconductor-based nanoscale devices opened up a novel route to realise a flying qubit with a single electron. In the present review, we introduce the concept of these electron flying qubits, discuss their most promising realisations and show how numerical simulations are applicable to accelerate experimental development cycles. Addressing the technological challenges of flying qubits that are currently faced by academia and quantum enterprises, we underline the relevance of interdisciplinary cooperation to move emerging quantum industry forward. The review consists of two main sections: Pathways towards the electron flying qubit: We address three routes of single-electron transport in GaAs-based devices focusing on surface acoustic waves, hot-electron emission from quantum dot pumps and Levitons. For each approach, we discuss latest experimental results and point out how numerical simulations facilitate engineering the electron flying qubit. Numerical modelling of quantum devices: We review the full stack of numerical simulations needed for fabrication of the flying qubits. Choosing appropriate models, examples of basic quantum mechanical simulations are explained in detail. We discuss applications of open-source (KWANT) and the commercial (nextnano) platforms for modelling the flying qubits. The discussion points out the large relevance of software tools to design quantum devices tailored for efficient operation.

Modelling quantum nanodevices

Electron flying qubits

GaAs

AlGaAs based nanodevices

Quantum computers

Författare

Hermann Edlbauer

Université Grenoble Alpes

Junliang Wang

Université Grenoble Alpes

Thierry Crozes

Université Grenoble Alpes

Pierre Perrier

Université Grenoble Alpes

Seddik Ouacel

Université Grenoble Alpes

Clement Geffroy

Université Grenoble Alpes

Giorgos Georgiou

Université Grenoble Alpes

University of Glasgow

Eleni Chatzikyriakou

Université Grenoble Alpes

Antonio Lacerda-Santos

Université Grenoble Alpes

Xavier Waintal

Université Grenoble Alpes

D. Christian Glattli

Université Paris-Saclay

Preden Roulleau

Université Paris-Saclay

Jayshankar Nath

Université Paris-Saclay

Masaya Kataoka

National Physical Laboratory (NPL)

Janine Splettstoesser

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Matteo Acciai

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Maria Cecilia da Silva Figueira

Nextnano GmbH

Kemal Oeztas

Nextnano GmbH

Alex Trellakis

Nextnano GmbH

Thomas Grange

Nextnano Lab

Oleg M. Yevtushenko

Nextnano GmbH

Stefan Birner

Nextnano GmbH

Christopher Baeuerle

Université Grenoble Alpes

EPJ Quantum Technology

21960763 (eISSN)

Vol. 9 1 21

Capturing quantum dynamics on the picosecond scale (UltraFastNano)

Europeiska kommissionen (EU) (EC/H2020/862683), 2020-01-01 -- 2023-12-31.

Styrkeområden

Nanovetenskap och nanoteknik

Ämneskategorier (SSIF 2011)

Annan fysik

Den kondenserade materiens fysik

DOI

10.1140/epjqt/s40507-022-00139-w

Mer information

Senast uppdaterat

2024-12-13