Nonparametric Bayesian volatility estimation for gamma-driven stochastic differential equations
Artikel i vetenskaplig tidskrift, 2022

We study a nonparametric Bayesian approach to estimation of the volatility function of a stochastic differential equation driven by a gamma process. The volatility function is modelled a priori as piecewise constant, and we specify a gamma prior on its values. This leads to a straightforward procedure for posterior inference via an MCMC procedure. We give theoretical performance guarantees (minimax optimal contraction rates for the posterior) for the Bayesian estimate in terms of the regularity of the unknown volatility function. We illustrate the method on synthetic and real data examples.

nonparametric Bayesian estimation

Gamma process

stochastic differential equation

Författare

Denis Belomestny

Universität Duisburg-Essen

National Research University Higher School of Economics

Shota Gugushvili

Wageningen University and Research

Moritz Schauer

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Peter Spreij

Korteweg-de Vries Institute for Mathematics

Radboud Universiteit

Bernoulli

1350-7265 (ISSN)

Vol. 28 4 2151-2180

Ämneskategorier

Beräkningsmatematik

Sannolikhetsteori och statistik

Matematisk analys

DOI

10.3150/21-BEJ1413

Mer information

Senast uppdaterat

2022-09-01