Controlling Atom-Photon Bound States in an Array of Josephson-Junction Resonators
Artikel i vetenskaplig tidskrift, 2022

Engineering the electromagnetic environment of a quantum emitter gives rise to a plethora of exotic light -matter interactions. In particular, photonic lattices can seed long-lived atom-photon bound states inside photonic band gaps. Here, we report on the concept and implementation of a novel microwave architecture consisting of an array of compact superconducting resonators in which we have embedded two frequency -tunable artificial atoms. We study the atom-field interaction and access previously unexplored coupling regimes, in both the single-and double-excitation subspace. In addition, we demonstrate coherent interactions between two atom-photon bound states, in both resonant and dispersive regimes, that are suitable for the implementation of SWAP and CZ two-qubit gates. The presented architecture holds promise for quantum simulation with tunable-range interactions and photon transport experiments in the nonlinear regime.

Författare

Marco Scigliuzzo

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Giuseppe Calajo

Barcelona Institute of Science and Technology (BIST)

Francesco Ciccarello

Consiglio Nazionale delle Ricerche (CNR)

Universita degli Studi di Palermo

Daniel Perez Lozano

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Andreas Bengtsson

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Pasquale Scarlino

Ecole Polytechnique Federale de Lausanne (EPFL)

Andreas Wallraff

Eidgenössische Technische Hochschule Zürich (ETH)

Darrick Chang

Institucio Catalana de Recerca i Estudis Avancats

Barcelona Institute of Science and Technology (BIST)

Per Delsing

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Simone Gasparinetti

Chalmers, Mikroteknologi och nanovetenskap, Kvantteknologi

Physical Review X

21603308 (eISSN)

Vol. 12 3 031036

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Den kondenserade materiens fysik

DOI

10.1103/PhysRevX.12.031036

Mer information

Senast uppdaterat

2023-10-27