Inverse designed plasmonic metasurface with parts per billion optical hydrogen detection
Artikel i vetenskaplig tidskrift, 2022

Plasmonic sensors rely on optical resonances in metal nanoparticles and are typically limited by their broad spectral features. This constraint is particularly taxing for optical hydrogen sensors, in which hydrogen is absorbed inside optically-lossy Pd nanostructures and for which state-of-the-art detection limits are only at the low parts-per-million (ppm) range. Here, we overcome this limitation by inversely designing a plasmonic metasurface based on a periodic array of Pd nanoparticles. Guided by a particle swarm optimization algorithm, we numerically identify and experimentally demonstrate a sensor with an optimal balance between a narrow spectral linewidth and a large field enhancement inside the nanoparticles, enabling a measured hydrogen detection limit of 250 parts-per-billion (ppb). Our work significantly improves current plasmonic hydrogen sensor capabilities and, in a broader context, highlights the power of inverse design of plasmonic metasurfaces for ultrasensitive optical (gas) detection.

Författare

Ferry Nugroho

Vrije Universiteit Amsterdam

Universitas Indonesia

Ping Bai

Technische Universiteit Eindhoven

Iwan Darmadi

Chalmers, Fysik, Kemisk fysik

Gabriel W. Castellanos

Technische Universiteit Eindhoven

Joachim Fritzsche

Chalmers, Fysik, Kemisk fysik

Christoph Langhammer

Chalmers, Fysik, Kemisk fysik

Jaime Gómez Rivas

Technische Universiteit Eindhoven

Andrea Baldi

Vrije Universiteit Amsterdam

Nature Communications

2041-1723 (ISSN) 20411723 (eISSN)

Vol. 13 1 5737

Nano-Plasmonisk Ultrasnabb H2-sensor för en säker väteekonomi

Energimyndigheten (49103-1), 2020-01-02 -- 2021-12-31.

Rambidrag inom utlysningen "Materials Science 2015"

Stiftelsen för Strategisk forskning (SSF) (RMA15-0052), 2016-05-01 -- 2021-06-30.

Ämneskategorier (SSIF 2011)

Atom- och molekylfysik och optik

Annan fysik

Signalbehandling

DOI

10.1038/s41467-022-33466-8

PubMed

36180437

Mer information

Senast uppdaterat

2023-10-25