Two-particle time-domain interferometry in the fractional quantum Hall effect regime
Artikel i vetenskaplig tidskrift, 2022

Quasi-particles are elementary excitations of condensed matter quantum phases. Demonstrating that they keep quantum coherence while propagating is a fundamental issue for their manipulation for quantum information tasks. Here, we consider anyons, the fractionally charged quasi-particles of the Fractional Quantum Hall Effect occurring in two-dimensional electronic conductors in high magnetic fields. They obey anyonic statistics, intermediate between fermionic and bosonic. Surprisingly, anyons show large quantum coherence when transmitted through the localized states of electronic Fabry-Pérot interferometers, but almost no quantum interference when transmitted via the propagating states of Mach-Zehnder interferometers. Here, using a novel interferometric approach, we demonstrate that anyons do keep quantum coherence while propagating. Performing two-particle time-domain interference measurements sensitive to the two-particle Hanbury Brown Twiss phase, we find 53 and 60% visibilities for anyons with charges e/5 and e/3. Our results give a positive message for the challenge of performing controlled quantum coherent braiding of anyons.

Författare

Imen Taktak

Université Paris-Saclay

M. Kapfer

Université Paris-Saclay

J. Nath

Université Paris-Saclay

Preden Roulleau

Université Paris-Saclay

Matteo Acciai

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Janine Splettstoesser

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

I. Farrer

University of Sheffield

D. A. Ritchie

University of Cambridge

D. Christian Glattli

Université Paris-Saclay

Nature Communications

2041-1723 (ISSN) 20411723 (eISSN)

Vol. 13 1 5863-

Capturing quantum dynamics on the picosecond scale (UltraFastNano)

Europeiska kommissionen (EU) (EC/H2020/862683), 2020-01-01 -- 2023-12-31.

Styrkeområden

Nanovetenskap och nanoteknik

Ämneskategorier (SSIF 2011)

Annan fysik

Den kondenserade materiens fysik

DOI

10.1038/s41467-022-33603-3

PubMed

36195621

Mer information

Senast uppdaterat

2024-12-13