An inequality for the normal derivative of the Lane-Emden ground state
Artikel i vetenskaplig tidskrift, 2024

We consider Lane-Emden ground states with polytropic index 0 <= q - 1 <= 1, that is, minimizers of the Dirichlet integral among L-q-normalized functions. Our main result is a sharp lower bound on the L-2-norm of the normal derivative in terms of the energy, which implies a corresponding isoperimetric inequality. Our bound holds for arbitrary bounded open Lipschitz sets Omega subset of R-d, without assuming convexity.

Brunn-Minkowski

normal derivative

Lane-Emden

Författare

Rupert L. Frank

California Institute of Technology (Caltech)

Ludwig-Maximilians-Universität München (LMU)

MCQST

Simon Larson

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Göteborgs universitet

Advances in Calculus of Variations

1864-8258 (ISSN) 18648266 (eISSN)

Vol. 17 2 255-276

Ämneskategorier

Beräkningsmatematik

Teoretisk kemi

Matematisk analys

DOI

10.1515/acv-2022-0005

Mer information

Senast uppdaterat

2024-04-13