A Predictive Maintenance Application for A Robot Cell using LSTM Model
Paper i proceeding, 2022

Maintaining equipment is critical for increasing production capacity and decreasing production time. With the advent of digitalization, industries are able to access massive amounts of data that can be used to ensure their long-term viability and competitive advantage by implementing predictive maintenance. Therefore, this study aims to demonstrate a predictive maintenance application for a robot cell using real-world manufacturing big data coming from a company in the automotive industry. A hyperparameter tuned Long Short-Term Memory (LSTM) model is developed, and the results show that this model is capable of predicting the day of failure with good accuracy. The difficulties inherent in conducting real-world industrial initiatives are analyzed, and recommendations for improvement are presented. Copyright (C) 2022 The Authors.

Manufacturing

CRISP-DM

Machine Learning

Predictive Maintenance

Long Short-Term Memory (LSTM)

Smart Maintenance

Industrial Robots

Författare

Doyel Joseph

Student vid Chalmers

Tilani Gallege

Student vid Chalmers

Ebru Turanoglu Bekar

Chalmers, Industri- och materialvetenskap, Produktionssystem

Catarina Dudas

Volvo Cars

Anders Skoogh

Chalmers, Industri- och materialvetenskap, Produktionssystem

IFAC-PapersOnLine

2405-8963 (ISSN) 24058963 (eISSN)

Vol. 55 19 115-120

5th International-Federation-of-Automatic-Control (IFAC) Workshop on Advanced Maintenance Engineering, Services and Technologies (AMEST)
Bogota, Colombia,

Ämneskategorier (SSIF 2011)

Produktionsteknik, arbetsvetenskap och ergonomi

Tillförlitlighets- och kvalitetsteknik

Robotteknik och automation

DOI

10.1016/j.ifacol.2022.09.193

Mer information

Senast uppdaterat

2024-07-03