Accurate Nonempirical Range-Separated Hybrid van der Waals Density Functional for Complex Molecular Problems, Solids, and Surfaces
Artikel i vetenskaplig tidskrift, 2022

We introduce a new, general-purpose, range-separated hybrid van der Waals density functional termed vdW-DF2-ahbr within the nonempirical vdW-DF method [Hyldgaard, et al. J. Phys. Condens. Matter 32, 393001 (2020)]. It combines a correlation from vdW-DF2 with a screened Fock exchange that is fixed by a new model of exchange effects in the density-explicit vdW-DF-b86r or rev-vdW-DF2 functional [Hamada, Phys. Rev. B 89, 121103(R) (2014)]. The new vdW-DF2-ahbr prevents spurious exchange binding and has a small-density-gradient form set from many-body perturbation analysis. It is accurate for bulk as well as layered materials, and it systematically and significantly improves the performance of the present vdW-DFs for molecular problems. Importantly, vdW-DF2-ahbr also outperforms present-standard (dispersion-corrected) range-separated hybrids on a broad collection of noncovalent-interaction benchmark sets, while at the same time successfully mitigating the density-driven errors that often affect the description of molecular transition states and isomerization calculations. vdW-DF2-ahbr furthermore improves on state-of-the-art density-functional-theory approaches by succeeding at challenging problems. For example, it (1) correctly predicts both the substrate structure and the site preference for CO adsorption on Pt(111), (2) it outperforms existing nonempirical vdW-DFs for the description of CO2 adsorption in both a functionalized and in a simple metal-organic framework, and (3) it is highly accurate for the set of base-pair interactions in a model of DNA assembly.

Författare

Vivekanand Shukla

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Yang Jiao

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Jung-Hoon Lee

Korea Institute of Science and Technology (KITECH)

Lawrence Berkeley National Laboratory

Elsebeth Schröder

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Jeffrey B. Neaton

University of California at Berkeley

Kavli Energy NanoSciences Institute

Lawrence Berkeley National Laboratory

Per Hyldgaard

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Physical Review X

21603308 (eISSN)

Vol. 12 4 041003

Ett ramverk för fysikbaserad uppskattning av verktygsförslitning i skärande bearbetning

VINNOVA (2020-05179), 2021-03-22 -- 2024-11-20.

Laddningsöverförsel vid gränsytor i mjuka material: en utmaning för icke-lokal täthetsfunktionalteori

Vetenskapsrådet (VR) (2018-03964), 2019-01-01 -- 2022-12-31.

DNA: Undersökning av hur kvävebasers växelverkan påverkar fotofysiska egenskaper

Vetenskapsrådet (VR) (2020-04997), 2021-01-01 -- 2024-12-31.

Drivkrafter

Hållbar utveckling

Styrkeområden

Nanovetenskap och nanoteknik

Produktion

Energi

Livsvetenskaper och teknik (2010-2018)

Materialvetenskap

Ämneskategorier

Fysikalisk kemi

Annan fysik

Teoretisk kemi

Den kondenserade materiens fysik

Fundament

Grundläggande vetenskaper

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

Chalmers e-Commons

DOI

10.1103/PhysRevX.12.041003

Mer information

Senast uppdaterat

2024-12-11