Angle- and polarization-resolved luminescence from suspended and hexagonal boron nitride encapsulated MoSe2 monolayers
Artikel i vetenskaplig tidskrift, 2022

The polarized photoluminescence from atomically thin transition metal dichalcogenides is a frequently applied tool to scrutinize optical selection rules and valley physics, yet it is known to sensibly depend on a variety of internal and external material and sample properties. In this work, we apply combined angle- and polarization-resolved spectroscopy to explore the interplay of excitonic physics and phenomena arising from the commonly utilized encapsulation procedure on the optical properties of atomically thinMoSe2.We probe monolayers prepared in both suspended and encapsulated manners.We show that the hBN encapsulation significantly enhances the linear polarization of exciton photoluminescence emission at large emission angles. This degree of linear polarization of excitons can increase up to ∼17% in the hBN encapsulated samples. As we confirm by finite-difference time-domain simulations, it can be directly connected to the optical anisotropy of the hBN layers. In comparison, the linear polarization at finite exciton momenta is significantly reduced in a suspendedMoSe2 monolayer, and becomes notable only in cryogenic conditions. This phenomenon strongly suggests that the effect is rooted in the k-dependent anisotropic exchange coupling inherent in2Dexcitons.Our results have strong implications on further studies on valley contrasting selection rules and valley coherence phenomena using standard suspended and encapsulated samples.

Molybdenum compounds

Anisotropy

Finite difference time domain method

Excitons

photoluminescence

Författare

Bo Han

Carl von Ossietzky Universität Oldenburg

Sven Stephan

Carl von Ossietzky Universität Oldenburg

J. J.P. Thompson

Philipps-Universität Marburg

Martin Esmann

Carl von Ossietzky Universität Oldenburg

Carlos Anton-Solanas

Carl von Ossietzky Universität Oldenburg

Hangyong Shan

Carl von Ossietzky Universität Oldenburg

Nils Kunte

Carl von Ossietzky Universität Oldenburg

Samuel Brem

Chalmers, Fysik, Kondenserad materie- och materialteori

Sefaattin Tongay

Arizona State University

Christoph Lienau

Carl von Ossietzky Universität Oldenburg

Kenji Watanabe

National Institute for Materials Science (NIMS)

Takashi Taniguchi

National Institute for Materials Science (NIMS)

Martin Silies

Carl von Ossietzky Universität Oldenburg

Ermin Malic

Philipps-Universität Marburg

Chalmers, Fysik, Kondenserad materie- och materialteori

Christian Schneider

Carl von Ossietzky Universität Oldenburg

Optica

2334-2536 (ISSN)

Vol. 9 10 1190-1196

Graphene Core Project 3 (Graphene Flagship)

Europeiska kommissionen (EU) (EC/H2020/881603), 2020-04-01 -- 2023-03-31.

Ämneskategorier

Atom- och molekylfysik och optik

Annan fysik

Den kondenserade materiens fysik

DOI

10.1364/OPTICA.464533

Mer information

Senast uppdaterat

2022-11-23