ZZ-Net: A Universal Rotation Equivariant Architecture for 2D Point Clouds
Paper i proceeding, 2022

In this paper, we are concerned with rotation equivariance on 2D point cloud data. We describe a particular set of functions able to approximate any continuous rotation equivariant and permutation invariant function. Based on this result, we propose a novel neural network architecture for processing 2D point clouds and we prove its universality for approximating functions exhibiting these symmetries. We also show how to extend the architecture to accept a set of 2D-2D correspondences as indata, while maintaining similar equivariance properties. Experiments are presented on the estimation of essential matrices in stereo vision.

Machine learning

Deep learning architectures and techniques

Författare

Georg Bökman

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Fredrik Kahl

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Axel Flinth

Chalmers, Elektroteknik, Signalbehandling och medicinsk teknik

Umeå universitet

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition

10636919 (ISSN)

Vol. 2022-June 10966-10975
9781665469463 (ISBN)

2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
New Orleans, USA,

Ämneskategorier

Beräkningsmatematik

Sannolikhetsteori och statistik

Matematisk analys

DOI

10.1109/CVPR52688.2022.01070

Mer information

Senast uppdaterat

2022-11-23