Real-time semantic segmentation on FPGAs for autonomous vehicles with hls4ml
Artikel i vetenskaplig tidskrift, 2022

In this paper, we investigate how field programmable gate arrays can serve as hardware accelerators for real-time semantic segmentation tasks relevant for autonomous driving. Considering compressed versions of the ENet convolutional neural network architecture, we demonstrate a fully-on-chip deployment with a latency of 4.9 ms per image, using less than 30% of the available resources on a Xilinx ZCU102 evaluation board. The latency is reduced to 3 ms per image when increasing the batch size to ten, corresponding to the use case where the autonomous vehicle receives inputs from multiple cameras simultaneously. We show, through aggressive filter reduction and heterogeneous quantization-aware training, and an optimized implementation of convolutional layers, that the power consumption and resource utilization can be significantly reduced while maintaining accuracy on the Cityscapes dataset.

machine learning

computer vision

hls4ml

deep learning

autonomous vehicles

FPGA

semantic segmentation

Författare

Nicolo Ghielmetti

CERN

Politecnico di Milano

Vladimir Loncar

Univerzitet u Beogradu

CERN

Maurizio Pierini

CERN

Marcel Roed

University of Oxford

CERN

Sioni Summers

CERN

Thea Aarrestad

Eidgenössische Technische Hochschule Zürich (ETH)

Christoffer Petersson

Chalmers, Matematiska vetenskaper, Algebra och geometri

Hampus Linander

Göteborgs universitet

Jennifer Ngadiuba

Fermi National Accelerator Laboratory

Kelvin Lin

University of Washington

Amazon

Philip Harris

Massachusetts Institute of Technology (MIT)

MACHINE LEARNING-SCIENCE AND TECHNOLOGY

2632-2153 (eISSN)

Vol. 3 4 045011

Ämneskategorier

Datorteknik

Kommunikationssystem

Datorseende och robotik (autonoma system)

DOI

10.1088/2632-2153/ac9cb5

Mer information

Senast uppdaterat

2023-10-25